In this study, fully developed flow parallel to ordered fibers is investigated analytically. The considered fibrous media are made up of in-line (square), staggered, and hexagonal arrays of cylinders. Starting from the general solution of Poisson’s equation, compact analytical solutions are proposed for both velocity distribution and permeability of the considered structures. In addition, independent numerical simulations are performed for the considered arrangements over the entire range of porosity and the results are compared with the proposed solutions. The developed solutions are successfully verified through comparison with experimental data, collected by others, and the present numerical results over a wide range of porosity. The results show that for the ordered arrangements with high porosity, the parallel permeability is independent of the microstructure geometrical arrangements; on the other hand, for lower porosities the hexagonal arrangement provides lower pressure drop, as expected.

1.
Kaviany
,
M.
, 1992,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
2.
Tahir
,
M. A.
, and
Vahedi Tafreshi
,
H.
, 2009, “
Influence of Fiber Orientation on the Transverse Permeability of Fibrous Media
,”
Phys. Fluids
0031-9171,
21
, p.
083604
.
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
4.
Clague
,
D. S.
,
Kandhai
,
B. D.
,
Zhang
,
R.
, and
Sloot
,
P. M. A.
, 2000, “
Hydraulic Permeability of (Un)Bounded Fibrous Media Using the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
61
(
1
), pp.
616
625
.
5.
Spielman
,
L.
, and
Goren
,
S. L.
, 1968, “
Model for Predicting Pressure Drop and Filtration Efficiency in Fibrous Media
,”
Environ. Sci. Technol.
0013-936X,
2
, pp.
279
287
.
6.
Jaganathan
,
S.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
, 2008, “
A Realistic Approach for Modeling Permeability of Fibrous Media: 3-D Imaging Coupled With CFD Simulation
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
244
252
.
7.
Zobel
,
S.
,
Maze
,
B.
,
Wang
,
Q.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
, 2007, “
Simulating Permeability of 3-D Calendered Fibrous Structures
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
6285
6296
.
8.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Pritzker
,
M. D.
,
Ioannidis
,
M. A.
, and
Behra
,
L. M.
, 2006, “
In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers
,”
J. Power Sources
0378-7753,
162
, pp.
228
238
.
9.
Tomadakis
,
M. M.
, and
Robertson
,
T.
, 2005, “
Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusion Estimates With Experimental and Analytical Results
,”
J. Compos. Mater.
0021-9983,
39
, pp.
163
188
.
10.
Jackson
,
G. W.
, and
James
,
D. F.
, 1986, “
The Permeability of Fibrous Porous Media
,”
Can. J. Chem. Eng.
0008-4034,
64
, pp.
364
374
.
11.
Happel
,
J.
, and
Brenner
,
H.
, 1973,
Low Reynolds Number Hydrodynamics
,
Noordhoff
,
Groningen
.
12.
Happel
,
J.
, 1959, “
Viscous Flow Relative to Arrays of Cylinders
,”
AIChE J.
0001-1541,
5
, pp.
174
177
.
13.
Sparrow
,
E. M.
, and
Loeffler
,
A. L.
, 1959, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
0001-1541,
5
, pp.
325
330
.
14.
Drummond
,
J. E.
, and
Tahir
,
M. I.
, 1984, “
Laminar Viscous Flow Through Regular Arrays of Parallel Solid Cylinders
,”
Int. J. Multiphase Flow
0301-9322,
10
, pp.
515
540
.
15.
Astrom
,
B. T.
,
Pipes
,
R. B.
, and
Advani
,
S. G.
, 1992, “
On Flow Through Aligned Fiber Beds and Its Application to Composite Processing
,”
J. Compos. Mater.
0021-9983,
26
(
9
), pp.
1351
1373
.
16.
Wang
,
C. Y.
, 2001, “
Stokes Flow Through a Rectangular Array of Circular Cylinders
,”
Fluid Dyn. Res.
0169-5983,
29
, pp.
65
80
.
17.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2009, “
Analytical Determination of Viscous Permeability of Fibrous Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2407
2414
.
18.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2008, “
Numerical Investigation of Flow in Fibrous Porous Media
,”
ECI International Conference on Heat Transfer and Fluid Flow in Microscale
, Whistler, Canada, Sep. 21–26.
19.
Fluent Inc.
, 2007, FLUENT 6.3 Users’ Guide, Lebanon, USA.
20.
Jaganathan
,
S.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
, 2008, “
On the Pressure Drop Prediction of Filter Media Composed of Fibers With Bimodal Diameter Distributions
,”
Powder Technology
,
181
, pp.
89
95
.
21.
Mattern
,
K. J.
, and
Deen
,
W. M.
, 2008, “
Mixing Rules for Estimating the Hydraulic Permeability Of Fiber Mixtures
,”
AIChE J.
0001-1541,
54
, pp.
32
41
.
22.
Clague
,
D. S.
, and
Philips
,
R. J.
, 1997, “
A Numerical Calculation of the Hydraulic Permeability of Three-Dimensional Disordered Fibrous Media
,”
Phys. Fluids
0031-9171,
9
(
6
), pp.
1562
1572
.
23.
Giuliani
,
J.
, and
Vafai
,
K.
, 1999, “
Particle Arrestance Modeling Within Fibrous Porous Media
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
155
163
.
24.
Inoue
,
M.
, and
Nakayama
,
A.
, 1998, “
Numerical Modeling of Non-Newtonian Fluid Flow in a Porous Medium Using a Three-Dimensional Periodic Array
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
131
136
.
25.
Sobera
,
M. P.
, and
Kleijn
,
C. R.
, 2006, “
Hydraulic Permeability of Ordered and Disordered Single-Layer Arrays of Cylinders
,”
Phys. Rev. E
1063-651X,
74
, p.
036301
.
26.
Higdon
,
J. J. L.
, and
Ford
,
G. D.
, 1996, “
Permeability of Three-Dimensional Models of Fibrous Porous Media
,”
J. Fluid Mech.
0022-1120,
308
, pp.
341
361
.
27.
Farlow
,
S. J.
, 1993,
Partial Differential Equations for Scientists and Engineers
,
Dover
,
New York
.
28.
Sullivan
,
R. R.
, 1942, “
Specific Surface Measurements on Compact Bundles of Parallel Fibers
,”
J. Appl. Phys.
0021-8979,
13
, pp.
725
730
.
29.
Skartsis
,
L.
,
Khomami
,
B.
, and
Kardos
,
J. L.
, 1992, “
Resin Flow Through Fiber Beds During Composite Manufacturing Processes. Part II: Numerical and Experimental Studies of Newtonian Flow Through Ideal and Actual Fiber Beds
,”
Polym. Eng. Sci.
0032-3888,
32
(
4
), pp.
231
239
.
30.
Shit
,
F. S.
, 1967, “
Laminar Flow in Axisymmetric Conduits by a Rational Approach
,”
Can. J. Chem. Eng.
0008-4034,
45
, pp.
285
294
.
31.
Tamayol
,
A.
, and
Bahrami
,
M.
, “
Laminar Flow in Microchannels With Non-Circular Cross-Section
,”
ASME J. Fluids Eng.
0098-2202, accepted.
You do not currently have access to this content.