This study was led in collaboration with the French Space Agency (CNES) and the Rocket Engine Division of Snecma. The main aims were the simulations and the analyses of cavitating flows in the rocket engine turbopump inducers, where the operating fluids are LH2 and LOx under cryogenic conditions. A ρ(P,T) state law modeling the cavitation phenomenon was integrated by the laboratory LEGI in the commercial computational fluid dynamics (CFD) code FINE/TURBO, developed by Numeca International. Various 3D numerical results are given for an inducer geometry and comparisons are made with experimental data (head drop curves) obtained by NASA.

1.
Hord
,
J.
, 1974, “
Cavitation in Liquid Cryogens, Vol. 4, Combined Correlations for Venturi, Hydrofoil, Ogives and Pumps
,”
NASA
Report No. CR-2448.
2.
Moore
,
R. D.
, and
Ruggeri
,
R. S.
, 1968, “
Prediction of Thermodynamic Effects on Developed Cavitation Based on Liquid Hydrogen and Freon 114 Data in Scaled Venturis
,”
NASA
Report No. TN D-4899.
3.
Stahl
,
H. A.
, and
Stepanoff
,
A. J.
, 1956, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
ASME J. Basic Eng.
0021-9223,
78
, pp.
1691
1693
.
4.
Billet
,
M. L.
,
Holl
,
J. W.
, and
Weir
,
D. S.
, 1981, “
Correlations of Thermodynamic Effects for Developed Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
103
(
4
), pp.
534
542
.
5.
Holl
,
J. W.
,
Billet
,
M. L.
, and
Weir
,
D. S.
, 1975, “
Thermodynamic Effects on Developed Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
97
(
4
), pp.
507
514
.
6.
Cooper
,
P.
, 1967, “
Analysis of Single and Two-Phase Flow in Turbopump Inducers
,”
ASME J. Eng. Power
0022-0825,
89
, pp.
577
588
.
7.
Rapposelli
,
E.
, and
d’Agostino
,
L.
, 2003, “
A Barotropic Cavitation Model With Thermodynamic Effects
,”
Fifth International Symposium on Cavitation CAV2003
, Osaka, Japan.
8.
Goncalvès
,
E.
, and
Fortes Patella
,
R.
, 2010, “
Numerical Study of Cavitating Flows With Thermodynamic Effect
,”
Comput. Fluids
0045-7930,
39
(
1
), pp.
99
113
.
9.
Rolland
,
J.
,
Fortes
,
R.
,
Goncalves
,
E.
,
Boitel
,
G.
, and
Barre
,
S.
, 2006, “
Experiments and Modelling of Cavitating Flows in Venturi, Part I: Stable Cavitation
,”
Fifth International Symposium on Cavitation CAV2006
, Wageningen, The Netherlands.
10.
Edwards
,
J. R.
, and
Franklin
,
R. K.
, 2000, “
Low-Diffusion Flux Splitting Methods for Real Fluid Flows With Phase Transition
,”
AIAA J.
0001-1452,
38
(
9
), pp.
1624
1633
.
11.
Hosangadi
,
A.
, and
Ahuja
,
V.
, 2005, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
267
281
.
12.
Hosangadi
,
A.
, and
Ahuja
,
V.
, 2006, “
Numerical Study of a Flat Plate Inducer: Comparison of Performance in Liquid Hydrogen and Water
,”
Sixth International Symposium on Cavitation CAV2006
, Wageningen, The Netherlands.
13.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
, 2005, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
0376-0421,
41
, pp.
558
608
.
14.
Zhang
,
X. B.
,
Qiu
,
L. M.
,
Gao
,
Y.
, and
Zhang
,
X. J.
, 2008, “
Computational Fluid Dynamic Study on Cavitation in Liquid Nitrogen
,”
Cryogenics
0011-2275,
48
, pp.
432
438
.
15.
Delannoy
,
Y.
, and
Kueny
,
J. -L.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modelling
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
98
, pp.
153
158
.
16.
Rolland
,
R.
, 2008, “
Modélisation des écoulements cavitants dans les inducteurs de turbopompes: prise en compte des effets thermodynamiques
,” Ph.D. thesis, Institut Polytechnique de Grenoble, France.
17.
Numeca International
, 2003, FINE/TURBO, Numerical Mechanics Applications, Software Package, Ver. 4.0-1.
18.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
, 1981, “
Numerical Simulation of the Euler Equations by Finite Volume Method Using Runge–Kutta Time Stepping Schemes
,” AIAA Paper No. 81-1259.
19.
Hakimi
,
N.
, 1998, “
Preconditioning Methods for Time Dependent Navier–Stokes Equations
,” Ph.D. thesis, Vrije University, Brussels, Belgium.
20.
Yang
,
Z.
, and
Shih
,
T. H.
, 1993, “
A k−ε Model for Turbulence and Transitional Boundary Layer
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier-Science
,
Amsterdam
, pp.
165
175
.
21.
Hakimi
,
N.
,
Hirsch
,
C.
, and
Pierret
,
S.
, 2000, “
Presentation and Application of a New Extended k-e Model With Wall Functions
,”
ECCOMAS Symposium
, Barcelona, Spain.
22.
Pouffary
,
B.
,
Fortes-Patella
,
R.
,
Reboud
,
J. -L.
, and
Lambert
,
P. -A.
, 2008, “
Numerical Simulation of 3D Cavitating Flows: Analysis of Cavitation Head Drop in Turbomachinery
,”
ASME J. Fluids Eng.
0098-2202,
130
(
4
), p.
041302
.
23.
Meng
,
P. R.
, and
Moore
,
R. D.
, 1970, “
Hydrogen Cavitation Performance of 80.6° Helical Inducer Mounted in Line With Stationary Centerbody
,”
NASA
Report No. TN X-1935.
24.
Flores
,
N. G.
,
Goncalvès
,
E.
,
Fortes Patella
,
R.
,
Rolland
,
J.
, and
Rebattet
,
C.
, 2008, “
Head Drop of a Spatial Turbopump Inducer
,”
ASME J. Fluids Eng.
0098-2202,
130
(
11
), p.
111301
.
25.
Watanabe
,
S.
,
Furukawa
,
A.
, and
Yoshida
,
Y.
, 2008, “
Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method
,”
Int. J. Rotating Mach.
1023-621X,
2008
, p.
125678
.
You do not currently have access to this content.