The present work investigates mass conservation equations in turbulent flow between parallel plates with variable mass diffusivity. Species conservation equations are relative to the average concentration, as well as to the concentration variance. The product of fluctuating mass diffusivity and space gradient of concentration fluctuation is appearing in the equation of mean and concentration variance. A physical interpretation is given to the different terms. The assumption of a relation between mass diffusivity and concentration allows writing expressions for average and fluctuating mass diffusivity, which can be simplified on the basis of theoretical considerations. The new mass flux is expressed as a function of mass diffusivity and a gradient of concentration variance. Further considerations make it possible to model the new terms appearing in the concentration variance equation. The mass conservation equation can be solved when coupled to the equation of concentration variance. The equations are solved numerically for flow between parallel plates in order to evaluate the influence of the new terms.

1.
Crank
,
J.
, 1990,
The Mathematics of Diffusion
,
Oxford University Press
,
London
.
2.
Rao
,
D. P.
, and
Rao
,
G. H.
, 1980, “
The Effect of Concentration Dependent Diffusivities on Mass Transfer Coefficients
,”
Lett. Heat Mass Transfer
0094-4548,
7
, pp.
163
170
.
3.
Carlfors
,
J.
, and
Rymdén
,
R.
, 1985, “
Self Diffusion of Small Molecules in Aqueous Solution of Poly(Vinylpyrrolidone)
,”
Polymer
0032-3861,
26
, pp.
940
944
.
4.
Harris
,
K. R.
,
Goscinska
,
T.
, and
Lam
,
H. N.
, 1993, “
Mutual Diffusion Coefficients for the Systems Water-Ethanol and Water-Propan-1-ol at 25°C
,”
J. Chem. Soc., Faraday Trans.
0956-5000,
89
(
12
), pp.
1969
1974
.
5.
Tanahatoe
,
J. J.
, and
Kuil
,
M. E.
, 1997, “
Molar Mass Dependence of the Apparent Diffusion Coefficient of Flexible Highly Charged Polyelectrolytes in the Dilute Concentration Regime
,”
J. Phys. Chem. A
1089-5639,
101
, pp.
8389
8394
.
6.
Gao
,
H. C.
,
Zhu
,
R. X.
,
Yang
,
X. Y.
,
Mao
,
S. Z.
,
Zhao
,
S.
,
Yu
,
J. Y.
, and
Du
,
Y. R.
, 2004, “
Properties of Polyethylene Glycol (23) Lauryl Ether With Cetyltrimethylammonium Bromide in Mixed Aqueous Solutions Studied by Self-Diffusion Coefficient NMR
,”
J. Colloid Interface Sci.
0021-9797,
273
, pp.
626
631
.
7.
Valente
,
A. J. M.
,
Ribeiro
,
A. C. F.
,
Lobo
,
V. M. M.
, and
Jiménez
,
A.
, 2004, “
Diffusion Coefficients of Lead (II) Nitrate in Nitric Acid Aqueous Solutions at 298 K
,”
J. Mol. Liq.
0167-7322,
111
, pp.
33
38
.
8.
Chang
,
L. C.
,
Lin
,
T. I.
, and
Li
,
M. H.
, 2005, “
Mutual Diffusion Coefficients of Some Aqueous Alkanolamines Solutions
,”
J. Chem. Eng. Data
0021-9568,
50
, pp.
77
84
.
9.
Grossmann
,
T.
, and
Winkelmann
,
J.
, 2005, “
Ternary Diffusion Coefficients of Glycerol+Acetone+Water by Taylor Dispersion Measurements at 298.15 K
,”
J. Chem. Eng. Data
0021-9568,
50
, pp.
1396
1403
.
10.
Wittko
,
G.
, and
Köhler
,
W.
, 2006, “
Influence of Isotopic Substitution on the Diffusion and Thermal Diffusion Coefficient of Binary Liquids
,”
Eur. Phys. J. E
1292-8941,
21
, pp.
283
291
.
11.
Latrous
,
H.
,
Besbes
,
R.
, and
Ouerfelli
,
N.
, 2008, “
Self-Diffusion Coefficients and Structure of the Trivalent F-Element Ions, Eu, Gd, Am, Bk, Cf and Es in Aqueous Diluted and Concentrated Solutions
,”
J. Mol. Liq.
0167-7322,
138
, pp.
51
54
.
12.
Ouerfelli
,
N.
,
Latrous
,
H.
, and
Ammar
,
M.
, 2009, “
An Equation for Self-Diffusion Coefficients of the Trivalent Lanthanide Ion 152Eu (III) in Concentrated Asymmetrical 3:1 Electrolyte Aqueous Solutions at Ph 2.50 and at 298.15 K
,”
J. Mol. Liq.
0167-7322,
146
, pp.
52
59
.
13.
Lin
,
S. H.
, 1992, “
Concentration-Dependent Diffusion of Dye in Reactive Dyeing Systems
,”
J. Appl. Polym. Sci.
0021-8995,
44
(
10
), pp.
1743
1749
.
14.
Tsunashima
,
Y.
,
Hashimoto
,
T.
, and
Nakano
,
T.
, 1996, “
First and Second Concentration-Dependent Coefficients of Translational Diffusion and Sedimentation for Poly(R-Methylstyrene) in a Good Solvent
,”
Macromolecules
0024-9297,
29
, pp.
3475
3484
.
15.
Küntz
,
M.
, and
Lavall’ee
,
P.
, 2004, “
Anomalous Diffusion is the Rule in Concentration-Dependent Diffusion Processes
,”
J. Phys. D: Appl. Phys.
0022-3727,
37
, pp.
L5
L8
.
16.
Gaigalas
,
A. K.
,
Reipa
,
V.
,
Hubbard
,
J. B.
,
Edwards
,
J.
, and
Douglas
,
J.
, 1995, “
A Non-Perturbative Relation Between the Mutual Diffusion Coefficient, Suspension Viscosity, and Osmotic Compressibility: Application to Concentrated Protein Solutions
,”
Chem. Eng. Sci.
0009-2509,
50
(
7
), pp.
1107
1114
.
17.
Richard Bowen
,
W.
, and
Williams
,
P. M.
, 2001, “
Prediction of the Rate of Cross-Flow Ultra Filtration of Colloids With Concentration-Dependent Diffusion Coefficient and Viscosity Theory and Experiment
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
3083
3099
.
18.
Gorbet
,
M. B.
, and
Sefton
,
M. V.
, 2004, “
Biomaterial-Associated Thrombosis: Roles of Coagulation Factors, Complement, Platelets and Leukocytes
,”
Biomaterials
0142-9612,
25
, pp.
5681
5703
.
19.
Gemci
,
T.
,
Shortall
,
B.
,
Allen
,
G. M.
,
Corcoran
,
T. E.
, and
Chigier
,
N. A.
, 2003, “
A CFD Study of the Throat During Aerosol Drug Delivery Using Heliox and Air
,”
J. Aerosol Sci.
0021-8502,
34
, pp.
1175
1192
.
20.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT
,
Cambridge, MA
.
21.
Schwertfirm
,
F.
, and
Manhart
,
M.
, 2007, “
DNS of Passive Scalar Transport in Turbulent Channel Flow at High Schmidt Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1204
1214
.
22.
Hasegawa
,
Y.
, and
Kasagi
,
N.
, 2007, “
Effects of Interfacial Velocity Boundary Condition on Turbulent Mass Transfer at High Schmidt Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
28
, pp.
1192
1203
.
23.
Nagano
,
Y.
, and
Tagawa
,
M.
, 1990, “
An Improved K−E Model For Boundary Layer Flows
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
33
39
.
24.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
25.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
Introduction to Computational Fluid Dynamics. The Finite Volume Method
,
Longmans
,
London
.
26.
Shapiro
,
E.
, and
Drikakis
,
D.
, 2005, “
Artificial Compressibility, Characteristics-Based Schemes for Variable Density, Incompressible, Multi-Species Flows. Part I. Derivation of Different Formulations and Constant Density Limit
,”
J. Comput. Phys.
0021-9991,
210
, pp.
584
607
.
27.
Shapiro
,
E.
, and
Drikakis
,
D.
, 2005, “
Artificial Compressibility, Characteristics-Based Schemes for Variable-Density, Incompressible, Multispecies Flows: Part II. Multigrid Implementation and Numerical Tests
,”
J. Comput. Phys.
0021-9991,
210
, pp.
608
631
.
28.
Thornber
,
B.
,
Mosedale
,
A.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R. J. R.
, 2008, “
An Improved Reconstruction Method for Compressible Flows With Low Mach Number Features
,”
J. Comput. Phys.
0021-9991,
227
, pp.
4873
4894
.
29.
Allaire
,
G.
,
Clerc
,
S.
, and
Kokh
,
S.
, 2002, “
A Five-Equation Model for the Simulation of Interfaces Between Compressible Fluids
,”
J. Comput. Phys.
0021-9991,
181
, pp.
577
616
.
30.
Barrer
,
R. M.
, 1946, “
Measurement of Diffusion and Thermal Conductivity “Constants” in Non-Homogeneous Media, and in Media Where These “Constants” Depend Respectively on Concentration or Temperature
,”
Proc. Phys. Soc. London
0370-1328,
58
, p.
321
.
31.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
, and
Yamamoto
,
K.
, 1998, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
482
491
.
You do not currently have access to this content.