Analytical solutions are presented for laminar fully developed flow in micro-/minichannels of hyperelliptical and regular polygonal cross sections in the form of compact relationships. The considered geometries cover a wide range of common simply connected shapes including circle, ellipse, rectangle, rectangle-with-round-corners, rhombus, star-shape, equilateral triangle, square, pentagon, and hexagon. A point matching technique is used to calculate closed form solutions for the velocity distributions in the above-mentioned channel cross sections. The developed relationships for the velocity distribution and pressure drop are successfully compared with existing analytical solutions and experimental data collected from various sources for a variety of geometries, including polygonal, rectangular, circular, elliptical, and rhombic cross sections. The present compact solutions provide a convenient and power tool for performing hydrodynamic analyses in a variety of fundamental and engineering applications such as in microfluidics, transport phenomena, and porous media.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
2.
Ho
,
C. M.
, and
Tai
,
Y. C.
, 1998, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
579
612
.
3.
Cha
,
S. W.
,
O’Hayre
,
R.
, and
Prinz
,
F. B.
, 2004, “
The Influence of Size Scale on the Performance of Fuel Cells
,”
Solid State Ionics
0167-2738,
175
, pp.
789
795
.
4.
Günther
,
A. l.
,
Khan
,
S. A.
,
Thalmann
,
M.
,
Trachsel
,
F.
, and
Jensen
,
K. F.
, 2004, “
Transport and Reaction in Microscale Segmented Gas-Liquid Flow
,”
Lab Chip
1473-0197,
4
, pp.
278
286
.
5.
Effenhauser
,
C.
,
Manz
,
A.
, and
Widmor
,
M.
, 1993, “
Glass Chips for High-Speed Capillary Electrophoresis Separation With Submicrometer Plate Heights
,”
Anal. Chem.
0003-2700,
65
, pp.
2637
2642
.
6.
Kaviany
,
M.
, 1992,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
7.
Tamayol
,
A.
, and
Bahrami
,
M.
, 2009, “
Analytical Determination of Viscous Permeability of Fibrous Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2407
2414
.
8.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1990, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators, A
0924-4247,
A21–A23
, pp.
431
437
.
9.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Transport in Small Channels
,”
Micromechanical Sensors, Actuators, and Systems
, DSC Vol.
19
,
ASME
,
New York
, pp.
49
58
.
10.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
74
.
11.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
ASME Micromechanical Sensors, Actuators, and Systems
, DSC Vol.
32
, pp.
123
134
.
12.
Stanley
,
R. S.
, 1997, “
Two-Phase Flow in Microchannels
,” Ph.D. thesis, Louisiana Tech University, Ruston, LA.
13.
Gao
,
P.
,
Person
,
S. L.
, and
Marinet
,
M. F.
, 2002, “
Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
1017
1027
.
14.
Cao
,
B.
,
Chen
,
G. W.
, and
Yuan
,
Q.
, 2005, “
Fully Developed Laminar Flow and Heat Transfer in Smooth Trapezoidal Microchannel
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
1211
1220
.
15.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
1073
1083
.
16.
Papautsky
,
I.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, 2001 “
A Review of Laminar Single Phase Flow in Microchannels
,”
ASME International Mechanical Engineering Conference and Exposition
, New York, Nov. 21–26.
17.
Dryden
,
H. L.
,
Murnaghan
,
F. D.
, and
Bateman
,
H.
, 1932, “
Hydrodynamics
,”
Dover
,
New York
, pp.
197
201
.
18.
Purday
,
H. F. P.
, 1949,
An Introduction to the Mechanics of Viscous Flow; Film Lubrication, the Flow of Heat by Conduction and Heat Transfer by Convection
,
Dover
,
New York
.
19.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. E.
, 2004,
Transport Phenomena in Biological Systems
,
Pearson Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Sparrow
,
E. M.
, 1962, “
Laminar Flow in Isosceles Triangular Ducts
,”
AIChE J.
0001-1541,
8
, pp.
599
604
.
21.
Sadasivam
,
R.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 1999, “
Fully-Developed Forced Convection Through Trapezoidal and Hexagonal Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
4321
4331
.
22.
Shah
,
R. K.
, 1975, “
Laminar Flow Friction and Forced Convection in Duct of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
849
862
.
23.
Richardson
,
S. M.
, 1980, “
Leveque Solution for Flow in an Elliptical Duct
,”
Lett. Heat Mass Transfer
0094-4548,
7
, pp.
353
362
.
24.
Cheng
,
K. C.
, 1966, “
Laminar Forced Convection in Regular Polygon Ducts With Uniform Peripheral Heat Flux
,”
Proceedings of the Third International Heat Transfer Conference
, New York, pp.
64
76
.
25.
Ding
,
J.
, and
Manglik
,
R. M.
, 1996, “
Analytical Solutions for Laminar Fully-Developed Flows in Double-Sine Shaped Ducts
,”
Heat Mass Transfer
0947-7411,
31
, pp.
269
277
.
26.
Lee
,
Y. -M.
, and
Chang
,
L. P.
, 2002, “
Heat Transfer Coefficients of Laminar Flow in a Rhombic Duct With Constant Wall Temperature
,”
Numer. Heat Transfer
0149-5720,
42
, pp.
285
296
.
27.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1994, “
Fully Developed Laminar Heat Transfer in Circular-Segment Ducts With Uniform Wall Temperature
,”
Numer. Heat Transfer
0149-5720,
26
, pp.
499
519
.
28.
Richardson
,
D. H.
,
Sekulic
,
D. P.
, and
Campo
,
A.
, 2000, “
Low Reynolds Number Flow Inside Microchannels With Irregular Cross-Sections
,”
Heat Mass Transfer
0947-7411,
36
, pp.
187
193
.
29.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
30.
Bahrami
,
M.
,
Tamayol
,
A.
, and
Taheri
,
P.
, 2009, “
Slip-Flow Pressure Drop in Microchannels of General Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
131
, pp.
1036
1044
.
31.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1036
1044
.
32.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2007, “
A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2492
2502
.
33.
Yovanovich
,
M. M.
,
Burde
,
S. S.
, and
Thompson
,
J. C.
, 1976, “
Thermal Constriction Resistance of Arbitrary Planar Contacts With Constant Flux
,”
AIAA 11th Thermophysics Conference
, San Diego, CA.
34.
White
,
F. M.
, 1984,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
35.
Farlow
,
S. J.
, 1993,
Partial Differential Equations for Scientists and Engineers
,
Dover
,
New York
.
36.
Sparrow
,
E. M.
, and
Loeffler
,
A. L.
, 1959, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
0001-1541,
5
, pp.
325
330
.
37.
Papautsky
,
I.
,
Gale
,
B. K.
,
Mohanty
,
S.
,
Ameelc
,
T. A.
, and
Frazier
,
A. B.
, 1999, “
Effects of Rectangular Microchannel Aspect Ratio on Laminar Friction Constant
,”
SPIE Conference on Microfluidic Devices and Systems II
, Santa Clara, CA.
38.
Liu
,
D.
, and
Garimella
,
S.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
65
72
.
39.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2519
2525
.
40.
Jung
,
J. Y.
, and
Kwak
,
H. Y.
, 2008, “
Fluid Flow and Heat Transfer in Microchannels With Rectangular Cross-Section
,”
Heat Mass Transfer
0947-7411,
44
, pp.
1041
1049
.
41.
Akbari
,
M.
,
Bahrami
,
M.
, and
Sinton
,
D.
, 2009, “
Flow in Rectangular Microchannels: An Experimental Investigation
,”
ASME J. Fluids Eng.
0098-2202,
131
, p.
041202
.
You do not currently have access to this content.