A numerical method including a macroscopic cavitation model based on the homogeneous flow theory and a microscopic cavitation model based on the bubble dynamics is proposed for the prediction of the impact force caused by cavitation bubble collapse in cavitating flows. A large eddy simulation solver, which is incorporated with a macroscopic cavitation model, is applied to simulate the unsteady cavitating flows. Based on the simulated flow field, the evolution of the cavitation bubbles is determined by a microscopic cavitation model from the resolution of a Rayleigh–Plesset equation including the effects of the surface tension, the viscosity and compressibility of fluid, the thermal conduction and radiation, the phase transition of water vapor at the interface, and the chemical reactions. The cavitation flow around a hydrofoil is simulated to validate the macroscopic cavitation model. A good quantitative agreement is obtained between the prediction and the experiment. The proposed numerical method is applied to predict the impact force at cavitation bubble collapse on a KT section in cavitating flows. It is found that the shock pressure caused by cavitation bubble collapse is very high. The impact force is predicted qualitatively compared with the experimental data.

1.
Hammitt
,
F. G.
, 1979, “
Cavitation Erosion: The State of the Art and Predicting Capability
,”
Appl. Mech. Rev.
0003-6900,
32
(
6
), pp.
665
675
.
2.
Karimi
,
A.
, and
Martin
,
J. L.
, 1986, “
Cavitation Erosion of Materials
,”
Int. Met. Rev.
0308-4590,
31
(
1
), pp.
1
26
.
3.
Franc
,
J. P.
, and
Michel
,
J. M.
, 1997, “
Cavitation Erosion Research in France: The State of the Art
,”
J. Mar. Sci. Technol.
0948-4280,
2
, pp.
233
244
.
4.
Kato
,
H.
,
Konno
,
A.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
, 1996, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
582
588
.
5.
Berchiche
,
N.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 2002, “
A Cavitation Erosion Model for Ductile Materials
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
601
606
.
6.
Rayleigh
,
L.
, 1917, “
On the Pressure Developed in a Liquid During Collapse of a Spherical Cavity
,”
Philos. Mag.
1478-6435,
34
, pp.
94
98
.
7.
Plesset
,
M. S.
, 1949, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
228
231
.
8.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammit
,
F. G.
, 1970,
Cavitation
,
McGraw-Hill
,
New York
.
9.
Lauterborn
,
W.
, and
Bolle
,
H.
, 1975, “
Experimental Investigations of Cavitation Bubble Collapse in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
0022-1120,
72
, pp.
391
399
.
10.
Young
,
F. R.
, 1989,
Cavitation
,
McGraw-Hill
,
New York
.
11.
Shima
,
A.
,
Tomita
,
Y.
,
Gibson
,
D. C.
, and
Blake
,
J. R.
, 1989, “
The Growth and Collapse of Cavitation Bubbles Near Composite Surfaces
,”
J. Fluid Mech.
0022-1120,
203
, pp.
199
214
.
12.
Prosperetti
,
A.
, 1994, “
Some Things We Did Not Know 10 Years Ago
,”
Bubble Dynamics and Interface Phenomena
,
J. R.
Blake
,
J. M.
Boulton-Stone
, and
N. H.
Thomas
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
3
16
.
13.
An
,
Y.
, 2006, “
Mechanism of Single-Bubble Sonoluminescence
,”
Phys. Rev. E
1063-651X,
74
, p.
026304
.
14.
Moshaii
,
A.
, and
Sadighi-Bonabi
,
R.
, 2004, “
Role of Liquid Compressional Viscosity in the Dynamics of a Sonoluminescing Bubble
,”
Phys. Rev. E
1063-651X,
70
, p.
016304
.
15.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1992, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
0022-1120,
240
, pp.
59
96
.
16.
Merkle
,
C. L.
,
Feng
,
J. Z.
, and
Buelow
,
P. E. O.
, 1998, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation
, Grenoble, France.
17.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
, pp.
849
875
.
18.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
19.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
975
995
.
20.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-2: Time-Dependent Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
997
1016
.
21.
Okita
,
K.
, and
Kajishima
,
T.
, 2002, “
Numerical Simulation of Unsteady Cavitating Flows Around a Hydrofoil
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
68
(
667
), pp.
637
644
.
22.
Qin
,
Z.
,
Bremhorst
,
K.
,
Alehossein
,
H.
, and
Meyer
,
T.
, 2007, “
Simulation of Cavitation Bubbles in a Convergent-Divergent Nozzle Water Jet
,”
J. Fluid Mech.
0022-1120,
573
, pp.
1
25
.
23.
Sagaut
,
P.
, 2002,
Large Eddy Simulation for Incompressible Flows—An Introduction
,
2nd ed.
,
Springer
,
New York
.
24.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
25.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
(
3
), pp.
633
635
.
26.
Toegel
,
R.
,
Gompf
,
B.
,
Pecha
,
R.
, and
Lohse
,
D.
, 2000, “
Does Water Vapor Prevent Upscaling Sonoluminescence
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
3165
3168
.
27.
Toegel
,
R.
, and
Lohse
,
D.
, 2003, “
Phase Diagrams for Sonoluminescing Bubbles: A Comparison Between Theory and Experiment
,”
J. Chem. Phys.
0021-9606,
118
, pp.
1863
1875
.
28.
Tomita
,
Y.
, and
Shima
,
A.
, 1977, “
On the Behave of a Spherical Bubble and the Impulse Pressure in a Viscous Compressible Liquid
,”
Bull. JSME
0021-3764,
20
(
149
), pp.
1453
1460
.
29.
Shen
,
Y. J.
, and
Dimotakis
,
P. E.
, 1989, “
The Influence of Surface Cavitation on Hydrodynamic Forces
,”
Proceedings of the 22nd ATTC
, St. Johns.
30.
Wang
,
H.
,
Ihto
,
Y.
, and
Taniguchi
,
N.
, 2004, “
Study on High Efficient Algorithm for Particle Tracing and Collision in Unstructured Grid
,”
JSME 17th Computational Mechanics Conference
, Sendai, Japan, Paper No. 2611.
You do not currently have access to this content.