The study deals with the breakup behavior of swirling liquid sheets discharging from gas-centered swirl coaxial atomizers with attention focused toward the understanding of the role of central gas jet on the liquid sheet breakup. Cold flow experiments on the liquid sheet breakup were carried out by employing custom fabricated gas-centered swirl coaxial atomizers using water and air as experimental fluids. Photographic techniques were employed to capture the flow behavior of liquid sheets at different flow conditions. Quantitative variation on the breakup length of the liquid sheet and spray width were obtained from the measurements deduced from the images of liquid sheets. The sheet breakup process is significantly influenced by the central air jet. It is observed that low inertia liquid sheets are more vulnerable to the presence of the central air jet and develop shorter breakup lengths at smaller values of the air jet Reynolds number Reg. High inertia liquid sheets ignore the presence of the central air jet at smaller values of Reg and eventually develop shorter breakup lengths at higher values of Reg. The experimental evidences suggest that the central air jet causes corrugations on the liquid sheet surface, which may be promoting the production of thick liquid ligaments from the sheet surface. The level of surface corrugations on the liquid sheet increases with increasing Reg. Qualitative analysis of experimental observations reveals that the entrainment process of air established between the inner surface of the liquid sheet and the central air jet is the primary trigger for the sheet breakup.

1.
Ryan
,
H. M.
,
Anderson
,
W. E.
,
Pal
,
S.
, and
Santoro
,
R. J.
, 1995, “
Atomization Characteristics of Impinging Liquid Jets
,”
J. Propul. Power
0748-4658,
11
, pp.
135
145
.
2.
Ashgriz
,
N.
,
Brocklehurst
,
W.
, and
Talley
,
D.
, 2001, “
Mixing Mechanisms in a Pair of Impinging Jets
,”
J. Propul. Power
0748-4658,
17
, pp.
736
749
.
3.
Mayer
,
W. O. H.
, 1994, “
Coaxial Atomization of a Round Liquid Jet in a High Speed Gas Stream: A Phenomenological Study
,”
Exp. Fluids
0723-4864,
16
, pp.
401
410
.
4.
Rahman
,
S. A.
,
Pal
,
S.
, and
Santoro
,
R. J.
, 1995, “
Swirl Coaxial Atomization: Cold-Flow and Hot-Fire Experiments
,” AIAA Paper No. 95-0381.
5.
Sivakumar
,
D.
, and
Raghunandan
,
B. N.
, 1996, “
Jet Interaction in Liquid-Liquid Coaxial Injectors
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
329
334
.
6.
Sivakumar
,
D.
, and
Raghunandan
,
B. N.
, 1998, “
Hysteric Interaction of Conical Liquid Sheets From Coaxial Atomizers: Influence on the Spray Characteristics
,”
Phys. Fluids
1070-6631,
10
, pp.
1384
1397
.
7.
Cohn
,
R. K.
,
Strakey
,
P. A.
,
Bates
,
R. W.
,
Talley
,
R. G.
,
Muss
,
J. A.
, and
Johnson
,
C. W.
, 2003, “
Swirl Coaxial Injector Development
,” AIAA Paper No. 2003-0124.
8.
Soller
,
S.
,
Wagner
,
R.
,
Kau
,
H. -P.
,
Martin
,
P.
, and
Maeding
,
C.
, 2005, “
Characterization of Main Chamber Injectors for GOX/Kerosene in a Single Element Rocket Combustor
,” AIAA Paper No. 2005-3750.
9.
Muss
,
J. A.
,
Johnson
,
C. W.
,
Cheng
,
G. C.
, and
Cohn
,
R.
, 2003, “
Numerical Cold Flow and Combustion Characterization of Swirl Coaxial Injectors
,” AIAA Paper No. 2003-0125.
10.
Lefebvre
,
A. H.
, 1989,
Atomization and Sprays
,
Hemisphere
,
New York
.
11.
Dombrowski
,
N.
, and
Fraser
,
R. P.
, 1954, “
A Photographic Investigation Into the Disintegration of Liquid Sheets
,”
Philos. Trans. R. Soc. London
0962-8428,
247
, pp.
101
130
.
12.
Squire
,
H. B.
, 1953, “
Investigation of the Instability of a Moving Liquid Film
,”
Br. J. Appl. Phys.
0508-3443,
4
, pp.
167
169
.
13.
Taylor
,
G. I.
, 1959, “
The Dynamics of Thin Sheets of Fluid. II Waves on Fluid Sheets
,”
Proc. R. Soc. London, Ser. A
0950-1207,
253
, pp.
296
312
.
14.
Taylor
,
G. I.
, 1959, “
The Dynamics of Thin Sheets of Fluid. III Disintegration of Fluid Sheets
,”
Proc. R. Soc. London, Ser. A
0950-1207,
253
, pp.
313
321
.
15.
Dombrowski
,
N.
, and
Johns
,
W. R.
, 1963, “
The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets
,”
Chem. Eng. Sci.
0009-2509,
17
, pp.
291
305
.
16.
Clark
,
C. J.
, and
Dombrowski
,
N.
, 1972, “
Aerodynamic Instability and Disintegration of Inviscid Liquid Sheets
,”
Proc. R. Soc. London, Ser. A
0950-1207,
329
, pp.
467
478
.
17.
Hagerty
,
W.
, and
Shea
,
J. F.
, 1955, “
A Study of the Stability of Moving Liquid Film
,”
ASME J. Appl. Mech.
0021-8936,
22
, pp.
509
514
.
18.
Lin
,
S. P.
, 2003,
Breakup of Liquid Sheets and Jets
,
Cambridge University Press
,
London
.
19.
Mansour
,
A.
, and
Chigier
,
N.
, 1990, “
Disintegration of Liquid Sheets
,”
Phys. Fluids A
0899-8213,
2
, pp.
706
719
.
20.
Stapper
,
B. E.
,
Sowa
,
W. A.
, and
Samuelsen
,
G. S.
, 1992, “
An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-Dimensional Liquid Sheet
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
39
45
.
21.
Park
,
J.
,
Huh
,
K. Y.
,
Li
,
X.
, and
Renksizbulut
,
M.
, 2004, “
Experimental Investigations on Cellular Breakup of a Planar Liquid Sheet From an Air-Blast Nozzle
,”
Phys. Fluids
1070-6631,
16
, pp.
625
632
.
22.
Adzic
,
M.
,
Carvalho
,
I. S.
, and
Heitor
,
M. V.
, 2001, “
Visualization of the Disintegration of an Annular Liquid Sheet in a Coaxial Air Blast Injector at Low Atomizing Air Velocities
,”
Optical Diagnostics in Engineering
1364-4173,
5
, pp.
27
38
.
23.
Lozano
,
A.
,
Barreras
,
F.
,
Hauke
,
G.
, and
Dopazo
,
C.
, 2001, “
Longitudinal Instabilities in an Air-Blasted Liquid Sheet
,”
J. Fluid Mech.
0022-1120,
437
, pp.
143
173
.
24.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
You do not currently have access to this content.