This paper presents a numerical simulation study of dense granular-suspension flow in a conduit with constriction. An empirical function of solid concentrations and Reynolds number prescribes the force between a particle and the fluid. This simplification reduces the computing load of the fine flow-field details around each particle. In the fluid-momentum equation, a source term distributes the force over the particle volume. The study addresses particle-laden flow at constant liquid-flow rate. Two different algorithms of the interparticle contact show that the bridging phenomenon causing the blockage of the particles persists in the presence of the fluid flow. While the particles are in movement, there are frequent interparticle and particle-wall impacts and vigorous fluctuations of the net reaction force on the wall from the particle phase. There is close correlation between the component of this reaction oriented in the flow direction and the rate of change in the pressure drop across the constricted conduit.

1.
Nolte
,
K. G.
, 1988, “
Fluid Flow Considerations in Hydraulic Fracturing
,” Paper No. SPE 18537.
2.
Gruesbeck
,
C.
,
Salathiel
,
W. M.
, and
Echols
,
E. E.
, 1979, “
Design of Gravel Packs in Deviated Wellbores
,” Paper No. SPE 6805, pp.
109
115
.
3.
Leising
,
L. J.
, and
Walton
,
I. C.
, 2002, “
Cuttings-Transport Problems and Solutions in Coiled-Tubing Drilling
,” Paper No. SPE 77261.
4.
Jackson
,
R.
, 2000,
The Dynamics of Fluidized Particles
,
Cambridge University Press
,
Cambridge
.
5.
Cundall
,
P. A.
, and
Stack
,
O. D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
65
.
6.
Jean
,
M.
, and
Moreau
,
J. -J.
, 1991,
Dynamics of Elastic or Rigid Bodies With Frictional Contact: Numerical Methods
,
Publications du L.M.A.
,
Berlin
, Vol.
124
, pp.
9
29
.
7.
Glowinski
,
R.
,
Pan
,
T. W.
,
Helsa
,
T. I.
,
Joseph
,
D. D.
, and
Périaux
,
J.
, 2001, “
A Fictitious Domain Approach to the Direct Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
0021-9991,
169
(
2
), pp.
363
426
.
8.
Megally
,
A.
,
Laure
,
P.
, and
Coupez
,
T.
, 2004, “
Direct Simulation of Rigid Fibers in Viscous Fluid
,”
Proceedings of the Third International Symposium on Two-Phase Flow Modelling and Experimentation
, Pisa.
9.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
, 1977, “
The Particle-Source-in Cell (PSI-Cell) Model for Gas Droplet Flows
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
325
332
.
10.
Garg
,
R.
,
Narayanan
,
C.
,
Lakehal
,
D.
, and
Subramaniam
,
S.
, 2007, “
Accurate Numerical Estimation of Interphase Momentum Transfer in Lagrangian-Eulerian Simulations of Dispersed Two-Phase Flows
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
1337
1364
.
11.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
, 1992, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
0032-5910,
71
, pp.
239
250
.
12.
Crowe
,
C. T.
,
Sommerfield
,
M.
, and
Tsuji
,
Y.
, 1998,
Multiphase Flow With Droplets and Particles
,
CRC
,
Boca Raton, FL
.
13.
Maugis
,
D.
, 2000,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer-Verlag
,
Berlin
.
14.
Fortin
,
J.
,
Millet
,
O.
, and
de Saxcé
,
G.
, 2005, “
Numerical Simulation of Granular Materials by an Improved Discrete Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
639
663
.
15.
Wen
,
C. Y.
, and
Yu
,
Y. H.
, 1966, “
Mechanics of Fluidization
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
62
, pp.
100
111
.
16.
Massol
,
A.
,
Simonin
,
O.
, and
Poinsot
,
T.
, 2004, “
Steady and Unsteady Drag and Heat Transfer in Fixed Arrays of Equal Sized Spheres
,”
CERFACS
, Technical Report No. TR/CFD/04/13.
17.
Ferziger
,
J. H.
, and
Perić
,
M.
, 2002,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
18.
Fluent Inc.
, 2006, FLUENT 6.3 User’s Guide.
You do not currently have access to this content.