Conventional lattice Boltzmann method (LBM) is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. The LBM has been applied to different types of complex flows with varying degrees of success, and with increased attention focusing on microscale flows now. Due to its small scale, microchannel flows exhibit many interesting phenomena that are not observed in their macroscale counterpart. It is known that the Navier–Stokes equations can still be used to treat microchannel flows if a slip-wall boundary condition is assumed. The setting of boundary conditions in the conventional LBM has been a difficult task, and reliable boundary setting methods are limited. This paper reports on the development of a finite difference LBM (FDLBM) based numerical scheme suitable for microchannel flows to solve the modeled Boltzmann equation using a splitting technique that allows convenient application of a slip-wall boundary condition. Moreover, the fluid viscosity is accounted for as an additional term in the equilibrium particle distribution function, which offers the ability to simulate both Newtonian and non-Newtonian fluids. A two-dimensional nine-velocity lattice model is developed for the numerical simulation. Validation of the FDLBM is carried out against microchannel and microtube flows, a driven cavity flow, and a two-dimensional sudden expansion flow. Excellent agreement is obtained between numerical calculations and analytical solutions of these flows.

1.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
, 2002,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston, MA
, Chap. 2.
2.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
3.
Nie
,
X.
,
Doolen
,
G. D.
, and
Chen
,
S.
, 2002, “
Lattice-Boltzmann Simulations of Fluid Flows in MEMS
,”
J. Stat. Phys.
0022-4715,
107
(
1/2
), pp.
279
289
.
4.
Lim
,
C. Y.
,
Shu
,
C.
,
Niu
,
X. D.
, and
Chew
,
Y. T.
, 2002, “
Application of Lattice Boltzmann Method to Simulate Microchannel Flows
,”
Phys. Fluids
1070-6631,
14
(
7
), pp.
2299
2308
.
5.
Zhou
,
Y.
,
Zhang
,
R.
,
Staroselsky
,
I.
,
Chen
,
H.
,
Kim
,
W. T.
, and
Jhon
,
M. S.
, 2006, “
Simulation of Micro- and Nano-Scale Flows Via the Lattice Boltzmann Method
,”
Physica A
0378-4371,
362
, pp.
68
77
.
6.
Tian
,
Z. -W.
,
Zou
,
C.
,
Liu
,
H. -J.
,
Guo
,
Z. -L.
,
Liu
,
Z. -H.
, and
Zheng
,
C. -G.
, 2007, “
Lattice Boltzmann Scheme for Simulating Thermal Micro-Flow
,”
Physica A
0378-4371,
385
, pp.
59
68
.
7.
Niu
,
X. D.
,
Shu
,
C.
, and
Chew
,
Y. T.
, 2007, “
A Thermal Lattice Boltzmann Model With Diffuse Scattering Boundary Condition for Micro Thermal Flows
,”
Comput. Fluids
0045-7930,
36
, pp.
273
281
.
8.
Wolf-Gladrow
,
D. A.
, 2000,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
,
Springer-Verlag
,
Berlin
, Chap. 5.
9.
Sterling
,
J. D.
, and
Chen
,
S.
, 1996, “
Stability Analysis of Lattice Boltzmann Methods
,”
J. Comput. Phys.
0021-9991,
123
, pp.
196
206
.
10.
Loose
,
W.
, and
Hess
,
S.
, 1989, “
Rheology of Dense Model Fluids Via Nonequilibrium Molecular Dynamics: Shear Thinning and Ordering Transition
,”
Rheol. Acta
0035-4511,
28
, pp.
91
101
.
11.
He
,
X.
, and
Luo
,
L. S.
, 1997, “
Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation
,”
J. Stat. Phys.
0022-4715,
88
, pp.
927
944
.
12.
Tsutahara
,
M.
,
Kataoka
,
T.
,
Takada
,
N.
,
Kang
,
H. K.
, and
Kurita
,
M.
, 2002, “
Simulations of Compressible Flows by Using the Lattice Boltzmann and the Finite Difference Lattice Boltzmann Methods
,”
Comput. Fluid Dyn. J.
0918-6654,
11
(
1
), pp.
486
493
.
13.
Aharonov
,
E.
, and
Rothman
,
D. H.
, 1993, “
Non-Newtonian Flow (Through Porous Media): A Lattice Boltzmann Method
,”
Geophys. Res. Lett.
0094-8276,
20
, pp.
679
682
.
14.
Rakotomalala
,
N.
,
Salin
,
D.
, and
Watzky
,
P.
, 1996, “
Simulation of Viscous Flows of Complex Fluids With a Bhatnagar, Gross, and Krook Lattice Gas
,”
Phys. Fluids
1070-6631,
8
(
11
), pp.
3200
3202
.
15.
Boek
,
E. S.
,
Chin
,
J.
, and
Coveney
,
P. V.
, 2003, “
Lattice Boltzmann Simulation of the Flow of Non-Newtonian Fluids in Porous Media
,”
Int. J. Mod. Phys. B
0217-9792,
17
, pp.
99
102
.
16.
Gabbanelli
,
S.
,
Drazer
,
G.
, and
Koplik
,
J.
, 2005, “
Lattice Boltzmann Method for Non-Newtonian (Power-Law) Fluids
,”
Phys. Rev. E
1063-651X,
72
, p.
046312
.
17.
Yoshino
,
M.
,
Hotta
,
Y.
,
Hirozane
,
T.
, and
Endo
,
M.
, 2007, “
A Numerical Method for Incompressible Non-Newtonian Fluid Flows Based on the Lattice Boltzmann Method
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
147
, pp.
69
78
.
18.
Toro
,
E. F.
, 1999,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
,
2nd ed.
,
Springer-Verlag
,
Berlin
, Chap. 15.
19.
Xu
,
K.
, 1998, “
Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations
,”
29th CFD Lecture Series at von Karman Institute for Fluid Dynamics
, Belgium.
20.
Xu
,
K.
, 1998, “
Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations
,” VKI Report No. 1998-03.
21.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L. -S.
, and
Shyy
,
W.
, 2003, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
329
367
.
22.
Junk
,
M.
, 1999, “
Kinetic Schemes in the Case of Low Mach Numbers
,”
J. Comput. Phys.
0021-9991,
151
, pp.
947
968
.
23.
Strang
,
G.
, 1968, “
On the Construction and Comparison of Difference Schemes
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
5
(
3
), pp.
506
517
.
24.
Pullin
,
D. I.
, 1980, “
Direct Simulation Methods for Compressible Inviscid Ideal Gas Flow
,”
J. Comput. Phys.
0021-9991,
34
, pp.
231
244
.
25.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
26.
Mei
,
R.
, and
Shyy
,
W.
, 1998, “
On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
143
, pp.
426
448
.
27.
Guo
,
Z.
, and
Zhao
,
T. S.
, 2003, “
Explicit Finite-Difference Lattice Boltzmann Method for Curvilinear Coordinates
,”
Phys. Rev. E
1063-651X,
67
, p.
066709
.
28.
Shi
,
Y.
,
Zhao
,
T. S.
, and
Guo
,
Z. L.
, 2006, “
Finite Difference-Based Lattice Boltzmann Simulation of Natural Convection Heat Transfer in a Horizontal Concentric Annulus
,”
Comput. Fluids
0045-7930,
35
, pp.
1
15
.
29.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
, 2002, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
65
, p.
046308
.
30.
Navier
,
C. L. M. H.
, 1822, “
Memoire sur les lois du mouvement des fluides
,”
Mem. de l’Acad. des Sci.
,
6
, pp.
389
440
.
31.
Liu
,
K. F.
, and
Mei
,
C. C.
, 1994, “
Roll Waves on a Layer of a Muddy Fluid Flowing Down a Gentle Slope—A Bingham Model
,”
Phys. Fluids
1070-6631,
6
(
8
), pp.
2577
2590
.
32.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
33.
Lax
,
P. D.
, and
Wendroff
,
B.
, 1960, “
Systems of Conservation Laws
,”
Commun. Pure Appl. Math.
0010-3640,
13
, pp.
217
237
.
34.
Agarwal
,
R. K.
, 1981, “
A Third-Order-Accurate Upwind Scheme for Navier-Stokes Solutions at High Reynolds Numbers
,” AIAA Paper No. 81-0112.
35.
Kumar
,
A.
, and
Yajnik
,
K. S.
, 1980, “
Separated Flows at Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
97
, pp.
27
51
.
36.
Hung
,
T. K.
, and
Macagno
,
E. O.
, 1966, “
Laminar Eddies in a Two-Dimensional Conduit Expansion
,” La
Houille Blanche
0018-6368,
21
, pp.
391
401
.
You do not currently have access to this content.