Pressure driven liquid flow through rectangular cross-section microchannels is investigated experimentally. Polydimethylsiloxane microchannels are fabricated using soft lithography. Pressure drop data are used to characterize the friction factor over a range of aspect ratios from 0.13 to 0.76 and Reynolds number from 1 to 35 with distilled water as working fluid. Results are compared with the general model developed to predict the fully developed pressure drop in arbitrary cross-section microchannels. Using available theories, effects of different losses, such as developing region, minor flow contraction and expansion, and streaming potential on the measured pressure drop, are investigated. Experimental results compare well with the theory based on the presure drop in channels of arbitrary cross section.

1.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1036
1044
.
2.
Whitesides
,
G. M.
, 2006, “
The Origins and the Future of Microfluidics
,”
Nature (London)
0028-0836,
442
, pp.
368
372
.
3.
Grushka
,
E.
,
McCormick
,
R. M.
, and
Kirkland
,
J. J.
, 1989, “
Effect of Temperature Gradients on the Efficiency of Capillary Zone Electrophoresis Separations
,”
Anal. Chem.
0003-2700,
61
, pp.
241
246
.
4.
Fletcher
,
P. D. I.
,
Haswell
,
S. J.
,
Pombo-Villar
,
E.
,
Warrington
,
B. H.
,
Watts
,
P.
,
Wong
,
S.
, and
Zhang
,
X.
, 2002, “
Micro Reactors: Principles and Applications in Synthesis
,”
Tetrahedron
0040-4020,
58
, pp.
4735
4757
.
5.
DeWitt
,
S.
, 1999, “
Microreactors for Chemical Synthesis
,”
Curr. Opin. Chem. Biol.
1367-5931,
3
(
3
), pp.
350
356
.
6.
Miyake
,
R.
,
Lammerink
,
S. J.
,
Elwenspoek
,
M.
, and
Fluitman
,
H. J.
, 1993, “
Micro Mixer With Fast Diffusion
,” MEMS '93, Fort Lauderdale, FL, pp.
248
253
.
7.
Weigl
,
B. H.
,
Bardell
,
R. L.
, and
Cabrera
,
C. R.
, 2003, “
Lab-on-a-Chip for Drug Development
,”
Adv. Drug Delivery Rev.
0169-409X,
55
, pp.
349
377
.
8.
Becker
,
H.
, and
Locascio
,
L. E.
, 2002, “
Polymer Microfluidic Devices
,”
Talanta
0039-9140,
56
, pp.
267
287
.
9.
Chovan
,
T.
, and
Guttman
,
A.
, 2002, “
Microfabricated Devices in Biotechnology and Biochemical Processing
,”
Trends Biotechnol.
0167-7799,
20
(
3
), pp.
116
122
.
10.
Ehrfeld
,
W.
, 2003, “
Electrochemistry and Microsystems
,”
Electrochim. Acta
0013-4686,
48
, pp.
2857
2868
.
11.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
, 2006, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
815
824
.
12.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
0891-6152,
7
, pp.
249
64
.
13.
Xu
,
B.
,
Ooi
,
K. T.
, and
Wong
,
N. T.
, 2000, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
, pp.
1165
1176
.
14.
Ren
,
C. L.
, and
Li
,
D.
, 2004, “
Electroviscous Effects on Pressure-Driven Flow of Dilute Electrolyte Solutions in Small Microchannels
,”
J. Colloid Interface Sci.
0021-9797,
274
, pp.
319
330
.
15.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3477
3489
.
16.
Tuckerman
,
D. B.
, and
Peace
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
17.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Mass Transfer
0017-9310,
20
, pp.
142
148
.
18.
Pfhaler
,
J.
,
Harley
,
J.
, and
Bau
,
H.
, 1990, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators, A
0924-4247,
A21–A23
, pp.
431
434
.
19.
Pfhaler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Flow in Small Channels Micromechanical Sensors, Actuators, and Systems
,”
ASME Dyn. Syst. Control Div.
,
32
, pp.
49
60
.
20.
Urbanek
,
W.
,
Zemel
,
J. N.
, and
Bau
,
H. H.
, 1993, “
An Investigation of the Temperature Dependence of Poiseuille Numbers in Microchannel Flow
,”
J. Micromech. Microeng.
0960-1317,
3
, pp.
206
208
.
21.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3925
3936
.
22.
Papautsky
,
I.
,
Brazzle
,
J.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, 1999, “
Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory
,”
Sens. Actuators, A
0924-4247,
73
, pp.
101
108
.
23.
Ren
,
C. L.
, and
Li
,
D.
, 2005, “
Improved Understanding of the Effect of Electrical Double Layer on Pressure-Driven Flow in Microchannels
,”
Anal. Chim. Acta
0003-2670,
531
, pp.
15
23
.
24.
Weilin
,
Q.
,
Mala
,
H. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
353
364
.
25.
Guo
,
Z.
, and
Li
,
Z.
, 2003, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
149
159
.
26.
Morini
,
G. L.
, 2005, “
Viscous Heating in Liquid Flows in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3637
3647
.
27.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Laminar, Fully Developed Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
632
637
.
28.
Jiang
,
X. N.
,
Zhou
,
Z. Y.
,
Huang
,
X. Y.
, and
Liu
,
C. Y.
, 1997, “
Laminar Flow Through Microchannels Used for Microscale Cooling Systems
,”
IEEE/CPMT Electronic Packaging Technology Conference
, pp.
119
122
.
29.
Baviere
,
R.
,
Ayela
,
F.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2005, “
Experimental Characterization of Water Flow Through Smooth Rectangular Microchannels
,”
Phys. Fluids
1070-6631,
17
, p.
098105
.
30.
Bucci
,
A.
,
Celata
,
G. P.
,
Cumo
,
M.
,
Serra
,
E.
, and
Zummo
,
G.
, 2003, “
Water Single-Phase Fluid Flow and Heat Transfer in Capillary Tubes
,”
International Conference on Microchannels and Minichannels
, Vol.
1
, pp.
319
326
, ASME Paper No. 1037.
31.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2519
2525
.
32.
Liu
,
D.
, and
Garimella
,
S.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
,
18
, pp.
65
72
.
33.
Gao
,
P.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2002, “
Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
1017
1027
.
34.
Squires
,
T. M.
, and
Quake
,
S. R.
, 2005, “
Micro Fluidics: Fluid Physics at Nanoliter Scale
,”
Rev. Mod. Phys.
0034-6861,
77
, pp.
977
1026
.
35.
White
,
F. M.
, 1974,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
, Chap. 3.
36.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2007, “
A Novel Solution for Pressure Drop in Singly Connected Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2492
2502
. 0017-9310
37.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
, Chap. 10.
38.
Yovanovich
,
M. M.
, 1974, “
A General Expression for Predicting Conduction Shape Factors
,”
AIAA Prog. in Astro. and Aeronautics: Thermophysics and Space Craft Control
, Vol.
35
,
R. G.
Hering
, ed.,
MIT Press
,
Cambridge, MA
, pp.
265
291
.
39.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2002, “
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts and Channels Part 1: Hydrodynamic Problem
,”
Proceedings of Compact Heat Exchangers, A Festschrift on the 60th Birthday of Ramesh K. Shah
, Grenoble, France, pp.
123
130
.
40.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts, Supplement to Advances in Heat Transfer
,
Academic
,
New York
.
41.
Erickson
,
D.
,
Sinton
,
D.
, and
Li
,
D.
, 2003, “
Joule Heating and Heat Transfer in Poly(dimethylsiloxane) Microfluidic Systems
,”
Lab Chip
1473-0197,
3
, pp.
141
149
.
42.
McDonald
,
J. C.
,
Duffy
,
D. C.
,
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Wu
,
H.
,
Schueller
,
O. J. A.
, and
Whiteside
,
G.
, 2000, “
Fabrication of Microfluidic Systems in Poly(dimethylsiloxane)
,”
Electrophoresis
0173-0835,
21
, pp.
27
40
.
43.
Holman
,
J. P.
, 2001,
Experimental Methods for Engineering
, 7th ed.,
McGraw-Hill
,
New York
, Chap. 3.
44.
Phillips
,
R. J.
, 1990,
Microchannel Heat Sinks, Advances in Thermal Modeling of Electronic Components and Systems
,
Hemisphere
,
New York
, Chap. 3.
45.
Sharp
,
K. V.
,
Adrian
,
R. J.
,
Santiago
,
J. G.
, and
Molho
,
J. I.
, 2005,
Liquid Flows in Microchannels, MEMS Hand Book: Introduction and Fundamentals
, 2nd ed.,
Taylor & Francis
,
New York
.
46.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford
.
47.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
1073
1083
. 1290-0729
48.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
49.
Probstein
,
R. F.
, 1994,
Physicochemical Hydrodynamics
, 2nd ed.,
Wiley
,
New York
.
50.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
, 2006,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
Englewood Cliffs, NJ
.
51.
Lide
,
D.
, and
Kehiaian
,
H. V.
, 1994,
CRC Handbook of Thermophysical and Thermochemical Data
, 1st ed.,
CRC Press
,
Florida
.
52.
Lee
,
J. S. H.
,
Hu
,
Y.
, and
Li
,
D.
, 2005, “
Electrokinetic Concentration Gradient Generation Using a Converging-Diverging Microchannel
,”
Anal. Chim. Acta
,
543
, pp.
99
108
. 0003-2670
53.
Holden
,
M. A.
,
Kumar
,
S.
,
Beskok
,
A.
, and
Cremer
,
P. S.
, 2003, “
Microfluidic Diffusion Diluter: Bulging of PDMS Microchannels Under Pressure Driven Flow
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
412
418
.
54.
Gervais
,
T.
,
El-Ali
,
J.
,
Gunther
,
A.
, and
Jensen
,
K.
, 2006, “
Flow-Induced Deformation of Shallow Microfluidic Channels
,”
Lab Chip
,
6
, pp.
500
507
. 1473-0197
You do not currently have access to this content.