A phenomenological analysis of the cavitation erosion process of ductile materials is proposed. On the material side, the main parameters are the thickness of the hardened layer together with the conventional yield strength and ultimate strength. On the fluid side, the erosive potential of the cavitating flow is described in a simplified way using three integral parameters: rate, mean amplitude, and mean size of hydrodynamic impact loads. Explicit equations are derived for the computation of the incubation time and the steady-state erosion rate. They point out two characteristic scales. The time scale, which is relevant to the erosion phenomenon, is the covering time—the time necessary for the impacts to cover the material surface—whereas the pertinent length scale for ductile materials is the thickness of the hardened layer. The incubation time is proportional to the covering time with a multiplicative factor, which strongly depends on flow aggressiveness in terms of the mean amplitude of impact loads. As for the erosion rate under steady-state conditions, it is scaled by the ratio of the thickness of hardened layers to the covering time with an additional dependence on flow aggressiveness, too. The approach is supported by erosion tests conducted in a cavitation tunnel at a velocity of 65 m/s on stainless steel 316 L. Flow aggressiveness is inferred from pitting tests. The same model of material response that was used for mass loss prediction is applied to derive the original hydrodynamic impact loads due to bubble collapses from the geometric features of the pits. Long duration tests are performed in order to determine experimentally the incubation time and the mean depth of penetration rate and to validate the theoretical approach.

1.
Pereira
,
F.
,
Avellan
,
F.
, and
Dupont
,
Ph.
, 1998, “
Prediction of Cavitation Erosion: An Energy Approach
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
719
727
.
2.
Lecoffre
,
Y.
,
Marcoz
,
J.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 1985, “
Tentative Procedure for Scaling Cavitation Damage
,”
Proceedings of the Joint ASCE/ASME Mechanics Conference on “Cavitation in Hydraulic Structures and Turbomachinery
,” Albuquerque, NM, Jun. 24–26,
R. E. A.
Arndt
and
D. R.
Webb
, eds., FED-Vol.
25
, pp.
1
11
.
3.
Kato
,
H.
, 1975, “
A Consideration on Scaling Laws of Cavitation Erosion
,”
Int. Shipbuild. Prog.
0020-868X,
22
(
253
), pp.
305
327
.
4.
Kato
,
H.
,
Konno
,
A.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
, 1996, “
Possibility of Quantitative Prediction of Cavitation Erosion Without Model Test
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
582
588
.
5.
Maeda
,
M.
,
Yamaguchi
,
H.
, and
Kato
,
H.
, 1991, “
Laser Holography Measurement of Bubble Population in Cavitation Cloud on a Foil Section
First ASME-JSME Fluids Engineering Conference
, Portland, OR, Jun. 23–27,
H.
Kato
and
O.
Furuya
, eds., FED-Vol.
116
, pp.
67
75
.
6.
Tomita
,
Y.
, and
Shima
,
A.
, 1986, “
Mechanism of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse
,”
J. Fluid Mech.
0022-1120,
169
, pp.
535
564
.
7.
Vogel
,
A.
,
Lauterborn
,
W.
, and
Timm
,
R.
, 1989, “
Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles Near a Solid Boundary
,”
J. Fluid Mech.
0022-1120,
206
, pp.
299
338
.
8.
Philipp
,
A.
, and
Lauterborn
,
W.
, 1998, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
0022-1120,
361
, pp.
75
116
.
9.
Reisman
,
G. E.
,
Wang
,
Y. -C.
, and
Brennen
,
C. E.
, 1998, “
Observation of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
0022-1120,
355
, pp.
255
283
.
10.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
, 1970,
Cavitation
,
McGraw-Hill
,
New York
.
11.
Stinebring
,
D. R.
,
Holl
,
J. W.
, and
Arndt
,
R. E. A.
, 1980, “
Two Aspects of Cavitation Damage in the Incubation Zone: Scaling by Energy Considerations and Leading Edge Damage
,”
ASME J. Fluids Eng.
,
102
, pp.
481
485
. 0098-2202
12.
Fortes Patella
,
R.
,
Reboud
,
J. L.
, and
Archer
,
A.
, 2000, “
Cavitation Damage Measurement by 3D Laser Profilometry
,”
Wear
0043-1648,
246
, pp.
59
67
.
13.
Hammitt
,
F. G.
, 1979, “
Cavitation Erosion: The State of the Art and Predicting Capability
,”
Appl. Mech. Rev.
,
32
(
6
), pp.
665
675
. 0003-6900
14.
Hattori
,
S.
,
Sun
,
B. -H.
,
Hammitt
,
F. G.
, and
Okada
,
T.
, 1985, “
An Application of Bubble Collapse Pulse Height Spectra to Venturi Cavitation Erosion of 1100-O Aluminium
,”
Wear
,
103
, pp.
119
131
. 0043-1648
15.
Okada
,
T.
,
Iwai
,
Y.
,
Hattori
,
S.
, and
Tanimura
,
N.
, 1995, “
Relation Between Impact Load and the Damage Produced by Cavitation Bubble Collapse
,”
Wear
0043-1648,
184
, pp.
231
239
.
16.
Hattori
,
S.
,
Mori
,
H.
, and
Okada
,
T.
, 1998, “
Quantitative Evaluation of Cavitation Erosion
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
179
185
.
17.
Knapp
,
R. T.
, 1955, “
Recent Investigations of the Mechanics of Cavitation and Cavitation Damage
,”
Trans. ASME
0097-6822, October, pp.
1045
1054
.
18.
Knapp
,
R. T.
, 1958, “
Accelerated Field Tests of Cavitation Intensity
,”
Trans. ASME
0097-6822, January, pp.
91
102
.
19.
Belahadji
,
B.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 1991, “
A Statistical Analysis of Cavitation Erosion Pits
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
700
706
.
20.
Thiruvengadam
,
A.
, 1974, “
Handbook of Cavitation Erosion
,” Hydronautics Inc., Technical Report No. 7301-1.
21.
Karimi
,
A.
, and
Martin
,
J. L.
, 1986, “
Cavitation Erosion of Materials
,”
Int. Met. Rev.
0308-4590,
31
(
1
), pp.
1
26
.
22.
Pallabazzer
,
R.
, and
Mancuso
,
G.
, 1998, “
Erosive Cavitation Tests in Water Tunnel
,”
XIX Symposium AIRH
, pp.
500
509
.
23.
Zhou
,
Y. K.
, and
Hammitt
,
F. G.
, 1983, “
Cavitation Erosion Incubation Period
,”
Wear
,
86
, pp.
299
313
. 0043-1648
24.
Karimi
,
A.
, and
Leo
,
W. R.
, 1987, “
Phenomenological Model for Cavitation Rate Computation
,”
Mater. Sci. Eng.
0025-5416,
95
, pp.
1
14
.
25.
Berchiche
,
N.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 2002, “
A Cavitation Erosion Model for Ductile Materials
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
601
606
.
26.
Ball
,
A.
, 1983, “
On the Importance of Work Hardening in the Design of Wear-Resistant Materials
,”
Wear
0043-1648,
91
, pp.
201
207
.
27.
Li
,
S.
,
Zhang
,
Y.
, and
Hammitt
,
F. G.
, 1986, “
Characteristics of Cavitation Bubble Collapse Pulses, Associated Pressure Fluctuations, and Flow Noise
,”
J. Hydraul. Res.
,
24
(
2
), pp.
109
122
. 0022-1686
28.
Nguyen
,
M.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 1987, “
On Correlating Pitting Rate and Pressure Peak Measurements in Cavitating Flows
,”
J. W.
Holl
and
M. L.
Billet
, eds.,
Proceedings of the ASME International Symposium on Cavitation Research Facilities and Techniques
, ASME, Boston, Dec. 13–18, FED-Vol.
57
, pp.
207
216
.
29.
Fry
,
S. A.
, 1989, “
The Damage Capacity of Cavitating Flow From Pulse Height Analysis
,”
ASME J. Fluids Eng.
,
111
, pp.
502
509
. 0098-2202
30.
Momma
,
T.
, and
Lichtarowicz
,
A.
, 1995, “
A Study of Pressures and Erosion Produced by Collapsing Cavitation
,”
Wear
,
186–187
, pp.
425
436
. 0043-1648
31.
Franc
,
J. P.
, and
Michel
,
J. M.
, 2004,
Fundamentals of Cavitation
,
Kluwer Academic
,
Dordrecht
.
32.
Soyama
,
Y.
, and
Futakawa
,
M.
, 2004, “
Estimation of Incubation Time of Cavitation Erosion for Various Cavitating Conditions
,”
Tribol. Lett.
,
17
(
1
), pp.
27
30
. 1023-8883
33.
Hattori
,
S.
,
Ishikura
,
R.
, and
Zhang
,
Q.
, 2004, “
Construction of Database on Cavitation Erosion and Analyses of Carbon Steel Data
,”
Wear
,
257
(
9–10
), pp.
1022
1029
. 0885-0046
34.
Hattori
,
S.
,
Maeda
,
K.
, and
Zhang
,
Q.
, 2004, “
Formulation of Cavitation Erosion Behavior Based on Logistic Analysis
,”
Wear
,
257
(
9–10
), pp.
1064
1070
. 0885-0046
35.
Bedkowski
,
W.
,
Gasiak
,
G.
,
Lachowicz
,
C.
,
Lichtarowicz
,
A.
,
Lagoda
,
T.
, and
Macha
,
E.
, 1999, “
Relations Between Cavitation Erosion Resistance of Materials and Their Fatigue Strength Under Random Loading
,”
Wear
,
230
, pp.
201
209
. 0043-1648
You do not currently have access to this content.