The aim of this work is to provide a detailed two-dimensional numerical analysis of the physical phenomena occurring during dynamic stall of a Darrieus wind turbine. The flow is particularly complex because as the turbine rotates, the incidence angle and the blade Reynolds number vary, causing unsteady effects in the flow field. At low tip speed ratio, a deep dynamic stall occurs on blades, leading to large hysteresis lift and drag loops (primary effects). On the other hand, high tip speed ratio corresponds to attached boundary layers on blades (secondary effects). The optimal efficiency occurs in the middle range of the tip speed ratio where primary and secondary effects cohabit. To prove the capacity of the modeling to handle the physics in the whole range of operating condition, it is chosen to consider two tip speed ratios (λ=2 and λ=7), the first in the primary effect region and the second in the secondary effect region. The numerical analysis is performed with an explicit, compressible RANS k-ω code TURBFLOW, in a multiblock structured mesh configuration. The time step and grid refinement sensitivities are examined. Results are compared qualitatively with the visualization of the vortex shedding of Brochier (1986, “Water channel experiments of dynamic stall on Darrieus wind turbine blades,” J. Propul. Power, 2(5), pp. 445–449). Hysteresis lift and drag curves are compared with the data of Laneville and Vitecoq (1986, “Dynamic stall: the case of the vertical axis wind turbine,” Prog. Aerosp. Sci., 32, pp. 523–573).

1.
Templin
,
R. J.
, 1974, “
Aerodynamic Performance Theory for the NRC Vertical Axis Wind Turbine
,”
National Research Council of Canada
, Report No. LTR-LA-160.
2.
Strickland
,
J. H.
, 1975, “
The Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes
,”
SANDIA Laboratory
, Report No. SAND 75-041.
3.
Loth
,
J. L.
, and
McCoy
,
H.
, 1983, “
Optimisation of Darrieus Turbine With an Upwind and Downwind Momentum Model
,”
J. Energy
0146-1412,
7
, pp.
313
318
.
4.
Paraschivoiu
,
I.
, and
Delclaux
,
F.
, 1983, “
Double Multiple Streamtubes. Model With Recent Improvement
,”
J. Energy
0146-1412,
7
(
3
), pp.
250
255
.
5.
Paraschivoiu
,
I.
, 2002,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic
,
Brooklyn, NY
.
6.
Pawsey
,
N. C. K.
, 2002, “
Development and Evaluation of Passive Variable-Pitch Vertical Axis Wind Turbine
,” Ph.D. thesis, University of New South Wales, Sydney, Australia.
7.
Strickland
,
J. H.
,
Webster
,
B. T.
, and
Nguyen
,
T.
, 1979, “
A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,”
ASME J. Fluids Eng.
0098-2202,
101
, pp.
500
505
.
8.
Leishman
,
G. J.
, 2002, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
1095-4244,
5
, pp.
85
132
.
9.
Ponta
,
F. L.
, and
Jacovkis
,
M.
, 2001, “
A Vortex Model for Darrieus Turbine Using Finite Element Techniques
,”
Renewable Energy
0960-1481,
24
, pp.
1
18
.
10.
Leishman
,
G. J.
, 2002,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
,
New York
.
11.
Bielawa
,
R. L.
, 1975, “
Synthesized Unsteady Airfoil Data With Applications to Stall Flutter Calculations
,”
31st Annual Forum of the American Helicopter Society
, Washington, DC, May 13–15.
12.
Gormont
,
R. E.
, 1973, “
A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotor
,”
USAAVLABS
, Technical Report No. 72-67.
13.
Beddoes
,
T. S.
, 1978, “
Onset of Leading Edge Separation Effects Under Dynamic Conditions and Low Mach Number
,”
34th Annual Forum of the American Helicopter Society
, Washington, DC, May 15–17.
14.
Gangwani
,
S. T.
, 1981, “
Prediction on Dynamic Stall and Unsteady Airloads for Rotor Blades
,”
37th Annual Forum of the American Helicopter Society
, LA, May 17–20.
15.
Johnson
,
W.
, 1980,
Helicopter Theory
,
Princeton University Press
,
Princeton, NJ
.
16.
Pitot
,
D.
, 1989, “
Differential Equation Modelling of Dynamic Stall
,”
La Recherche Aerospatiale
, Paper No. 1989-6.
17.
Leishman
,
G. J.
, and
Beddoes
,
T. S.
, 1989, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
0002-8711,
34
(
3
), pp.
3
17
.
18.
Claessens
,
M. C.
, 2006, “
The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
19.
Allet
,
A.
,
Hall
,
É. S.
, and
Paraschivoiu
,
I.
, 1999, “
Numerical Simulation of Dynamic Stall Around an Airfoil in Darrieus Motion
,”
ASME J. Sol. Energy Eng.
0199-6231,
121
, pp.
69
76
.
20.
Simão Ferreira
,
C. J.
,
Bijl
,
L.
,
van Bussel
,
G.
, and
van Kuik
,
G.
, 2007, “
Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data
,”
J. Phys.: Conf. Ser.
1742-6588,
75
, p.
012023
.
21.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
, 1980, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
0146-1412,
4
(
2
), pp.
49
55
.
22.
McCroskey
,
W. J.
,
McAllistair
,
K. W.
,
Carr
,
L.
,
Pucci
,
L. W.
,
Lambert
,
O.
, and
Indengard
,
R.
, 1981, “
Dynamic Stall on Advanced Airfoils Sections
,”
J. Am. Helicopter Soc.
0002-8711,
26
(
7
), pp.
40
50
.
23.
Laneville
,
A.
, and
Vittecoq
,
P.
, 1986, “
Dynamic Stall: The Case of the Vertical Axis Wind Turbine
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
523
573
.
24.
Fraunié
,
P.
,
Brochier
,
G.
,
Béguier
,
C.
, and
Paraschivoiu
,
I.
, 1986, “
Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Propul. Power
0748-4658,
2
(
5
), pp.
445
449
.
25.
McCroskey
,
W. J.
, 1972, “
Dynamic Stall on Airfoils and Helicopters Rotors
,”
AGARD
Paper No. R595.
26.
Kok
,
J. C.
, 1999, “
Resolving the Dependence on Free-Stream Values for the k-ω Turbulence Model
,”
National Aerospace Laboratory NLR
, Paper No. NLR-TP-99295.
27.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
, 1982, “
An Arbitrary Lagrangian–Euler Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
33
, pp.
689
723
.
28.
Edwards
,
J. R.
, and
Liou
,
M. S.
, 1998, “
Low-Diffusion Flux-Splitting Methods for Flows at All Speeds
,”
AIAA J.
0001-1452,
36
(
9
), pp.
1610
1617
.
29.
Turkel
,
E.
, and
Vatsa Veer
,
N.
, 2003, “
Choice of Variables and Preconditioning for Time Dependent Problems
,”
16th AIAA Computational Fluid Dynamics Conference
, Orlando, FL, Jun. 23–26.
30.
Weiss
,
J. M.
, and
Smith
,
W. A.
, 1995, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
0001-1452,
33
(
11
), pp.
2050
2057
.
31.
Ploesteanu
,
C.
, 2004, “
Etude Hydrodynamique d’un Type d’Hydrolienne à axe Vertical pour les Courants Marins
,” Ph.D. thesis, Institut National Polytechnique de Grenoble, France.
32.
Ekaterinas
,
J. A.
, and
Platzer
,
M. F.
, 1998, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
0376-0421,
33
, pp.
759
846
.
33.
Chong
,
M. S.
, and
Perry
,
A. E.
, 1990, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
0899-8213,
2
(
5
), pp.
765
777
.
34.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
35.
Fujisawa
,
N.
, and
Shibuya
,
S.
, 2001, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
, pp.
201
214
. 0167-6105
You do not currently have access to this content.