In this paper, first, the Navier–Stokes equations for incompressible fully developed flow in microchannels and microtubes with the first-order and second-order slip boundary conditions are analytically solved. Then, the compressible Navier–Stokes equations are numerically solved with slip boundary conditions. The numerical methodology is based on the control volume scheme. Numerical results reveal that the compressibility effect increases the velocity gradient near the wall and the friction factor. On the other hand, the increment of velocity gradient near the wall leads to a much larger slip velocity than that for incompressible flow with the same value of Knudsen number and results in a corresponding decrement of friction factor. General correlations for the Poiseuille number (fRe), the Knudsen number (Kn), and the Mach number (Ma) containing the first-order and second-order slip coefficients are proposed. Correlations are validated with available experimental and numerical results.

1.
Ebert
,
W. A.
, and
Sparrow
,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
1018
1024
.
2.
Zhu
,
X.
,
Liao
,
Q.
, and
Xin
,
M. D.
, 2006, “
Gas Flow in Microchannel of Arbitrary Shape in Slip Flow Regime
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
10
, pp.
41
54
.
3.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
, 2007, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
473
484
.
4.
Kavehpour
,
H. P.
,
Faghri
,
M.
, and
Asako
,
Y.
, 1997, “
Effects of Compressibility and Rarefaction on Gaseous Flows in Microchannels
,”
Numer. Heat Transfer
0149-5720,
32
, pp.
677
696
.
5.
Morini
,
G. L.
,
Spiga
,
M.
, and
Tartarini
,
P.
, 2004, “
The Rarefaction Effect on the Friction Factor of Gas Flow in Microchannels
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
587
599
.
6.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
7.
Araki
,
T.
,
Kim
,
M. S.
,
Iwai
,
H.
, and
Suzuki
,
K.
, 2002, “
An Experimental Investigation of Gaseous Flow Characteristics in Microchannels
,”
Nanoscale Microscale Thermophy. Eng.
,
6
, pp.
117
130
.
8.
Turner
,
S. E.
,
Lam
,
L. C.
,
Faghri
,
M.
, and
Gregory
,
O. J.
, 2004, “
Experimental Investigation of Gas Flow in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
753
763
.
9.
Colin
,
S.
,
Lalonde
,
P.
, and
Caen
,
R.
, 2004, “
Validation of a Second-Order Slip Flow Model in Rectangular Microchannels
,”
Heat Transfer Eng.
0145-7632,
25
, pp.
23
30
.
10.
Sreekanth
,
A. K.
, 1969,
Slip Flow Through Long Circular Tubes
,”
Proceedings of the Sixth International Symposium on Rarefied Gas Dynamics
,
L.
Trilling
and
H. Y.
Wachman
, eds.,
Academic
,
New York
.
11.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I.
, and
Meolans
,
J. G.
, 2006, “
Mass Flow Rate Measurements in Gas Micro Flows
,”
Exp. Fluids
0723-4864,
41
, pp.
487
498
.
12.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2006, “
Challenges in Modeling Gas-Phase Flow in Microchannels: From Slip to Transition
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
3
12
.
13.
Guo
,
Z. Y.
, and
Wu
,
X. B.
, 1997, “
Compressibility Effect on the Gas Flow and Heat Transfer in a Microtube
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3251
3254
.
14.
Guo
,
Z. Y.
, and
Wu
,
X. B.
, 1998, “
Further Study on Compressibility Effects on the Gas Flow and Heat Transfer in a Microtube
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
2
, pp.
111
120
.
15.
Li
,
Z. X.
,
Xia
,
Z. Z.
, and
Du
,
D. X.
, 1999, “
Analytical and Experimental Investigation on Gas Flow in a Microtube
,”
Kyoto University-Tsinghua University Joint Conference on Energy and Environment
, Kyoto, Japan.
16.
Du
,
D. X.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
, 2000, “
Friction Resistance for Gas Flow in Smooth Microtubes
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
43
, pp.
171
178
.
17.
Asako
,
Y.
,
Pi
,
T.
,
Turner
,
S. E.
, and
Faghri
,
M.
, 2003, “
Effect of Compressibility on Gaseous Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3041
3050
.
18.
Asako
,
Y.
,
Nakayama
,
K.
, and
Shinozuka
,
T.
, 2005, “
Effect of Compressibility on Gaseous Flows in a Micro-Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4985
4994
.
19.
Morini
,
G.
,
Lorenzini
,
M.
,
Colin
,
S.
, and
Geoffroy
,
S.
, 2007, “
Experimental Analysis of Pressure Drop and Laminar to Turbulent Transition for Gas Flows in Smooth Microtubes
,”
Heat Transfer Eng.
0145-7632,
28
, pp.
670
679
.
20.
Tang
,
G. H.
,
Li
,
Z.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2007, “
Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2282
2295
.
21.
Sun
,
H. W.
, and
Faghri
,
M.
, 2000, “
Effect of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC
,”
Numer. Heat Transfer
0149-5720,
38
, pp.
153
168
.
22.
Jain
,
V.
, and
Lin
,
C. X.
, 2006, “
Numerical Modeling of Three-Dimensional Compressible Gas Flow in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
292
302
.
23.
Hong
,
C.
,
Asako
,
Y.
,
Turner
,
S. E.
, and
Faghri
,
M.
, 2007, “
Friction Factor Correlations for Gas Flow in Slip Flow Regime
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1268
1276
.
24.
Currie
,
I. G.
, 2003,
Fundamental Mechanics of Fluids
, 3rd ed.,
Marcel Dekker
,
New York
.
25.
Patankar
,
S. V.
, 1981, “
A Calculation Procedure for Two-Dimensional Elliptic Situations
,”
Numer. Heat Transfer
0149-5720,
4
, pp.
409
425
.
26.
Schwartz
,
L. W.
, 1987, “
A Perturbation Solution for Compressible Viscous Channel Flows
,”
J. Eng. Math.
0022-0833,
21
, pp.
69
86
.
27.
Cercignani
,
C.
, and
Daneri
,
A.
, 1963, “
Flow of a Rarefied Gas Between Two Parallel Plates
,”
J. Appl. Phys.
0021-8979,
34
, pp.
3509
3513
.
28.
Hsia
,
Y. T.
, and
Domoto
,
G. A.
, 1983, “
Experimental Investigation of Molecular Rarefaction Effects in Gas Lubricated Bearings at Ultra-Low Clearances
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
120
130
.
29.
Schamberg
,
R.
, 1947, “
The Fundamental Differential Equations and The Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems
,” Ph.D. thesis, California Institute of Technology.
30.
Hadjiconstantinou
,
N. G.
, 2003, “
Comment on Cercignani’s Second-Order Slip Coefficient
,”
Phys. Fluids
1070-6631,
15
, pp.
2352
2354
.
31.
Maurer
,
J.
,
Tabeling
,
P.
,
Joseph
,
P.
, and
Willaime
,
H.
, 2003, “
Second-Order Slip Laws in Microchannels for Helium and Nitrogen
,”
Phys. Fluids
1070-6631,
15
, pp.
2613
2621
.
You do not currently have access to this content.