A new approximate solution for the velocity profile of steady incompressible magnetohydrodynamic (MHD) flows in a rectangular microchannel driven by the Lorentz force is proposed. Mean velocity and mass flow rate in a channel, subsequently derived, can be used efficiently for many MHD-based microfluidic applications, including the design of a MHD-based microfluidic network without resorting to costly full-scale computational fluid dynamics. The closed-form solutions, provided for both direct-current (dc) and alternating-current (ac) electric and magnetic fields, are in simple forms, without any series or functions to evaluate, and so can be readily used for inverse or control problems associated with MHD-based lab-on-a-chip (LOC) devices. Extensive comparisons with previous analytical, computational, and experimental results are performed, and summarized in the present study. The proposed solutions are shown to agree better with existing experimental and computational reports than previous approximations and are to be used in a broad range of MHD-based LOC applications with both dc and ac fields with required accuracy.

1.
Affanni
,
A.
, and
Chiorboli
,
G.
, 2006, “
Numerical Modelling and Experimental Study of an ac Magnetohydrodynamic Micropump
,”
2006 Instrumentation and Measurement Technology Conference
,
Sorrento, Italy
.
2.
Aguilar
,
Z. P.
,
Arumugam
,
P.
, and
Fritsch
,
I.
, 2006, “
Study of Magnetohydrodynamic Driven Flow Through LTCC Channel With Self-Contained Electrodes
,”
J. Electroanal. Chem.
0022-0728,
591
, pp.
201
209
.
3.
Arumugam
,
P. U.
,
Fakunle
,
E. S.
,
Anderson
,
E. C.
,
Evans
,
S. R.
,
King
,
K. G.
,
Aguilar
,
Z. P.
,
Carter
,
C. S.
, and
Fritsch
,
I.
, 2006, “
Redox Magnetohydrodynamics in a Microfluidic Channel: Characterization and Pumping
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
E185
E194
.
4.
Bau
,
H. H.
,
Zhu
,
J.
,
Qian
,
S.
, and
Xiang
,
Y.
, 2003, “
A Magneto-Hydrodynamically Controlled Fluidic Network
,”
Sens. Actuators B
0925-4005,
88
, pp.
205
216
.
5.
Ho
,
J.
, 2007, “
Characteristic Study of MHD Pump With Channel in Rectangular Ducts
,”
J. Mar. Sci. Technol.
0948-4280,
15
, pp.
315
321
.
6.
Homsy
,
A.
,
Koster
,
S.
,
Eijkel
,
J. C. T.
,
van den Berg
,
A.
,
Lucklum
,
F.
,
Verpoorte
,
E.
, and
de Rooij
,
N. F.
, 2005, “
A High Current Density DC Magnetohydrodynamic (MHD) Micropump
,”
Lab Chip
1473-0197,
5
, pp.
466
471
.
7.
Homsy
,
A.
,
Linder
,
V.
,
Lucklum
,
F.
, and
de Rooij
,
N. F.
, 2007, “
Magnetohydrodynamic Pumping in Nuclear Magnetic Resonance Environments
,”
Sens. Actuators B
0925-4005,
123
, pp.
636
646
.
8.
Jang
,
J.
, and
Lee
,
S. S.
, 2000, “
Theoretical and Experimental Study of MHD (Magnetohydrodynamic) Micropump
,”
Sens. Actuators, A
0924-4247,
80
, pp.
84
89
.
9.
Kabbani
,
H.
,
Wang
,
A.
,
Luo
,
X.
, and
Qian
,
S.
, 2007, “
Modeling RedOx-Based Magnetohydrodynamics in Three-Dimensional Microfluidic Channels
,”
Phys. Fluids
1070-6631,
19
, p.
083604
.
10.
Lemoff
,
A. V.
, and
Lee
,
A. P.
, 2000, “
An AC Magnetohydrodynamic Micropump
,”
Sens. Actuators B
0925-4005,
63
, pp.
178
185
.
11.
Mathaba
,
T.
,
Mpholo
,
M.
,
Sebitia
,
S.
, and
Bau
,
H. H.
, 2006, “
Magneto-Hydrodynamic Fluid Flow Simulation Tool
,”
2006 International Conference on Micro and Nano Technologies, ICMNT06
,
Tizi-Ouzou, Algeria
.
12.
Qian
,
S.
, and
Bau
,
H. H.
, 2005, “
Magneto-Hydrodynamic Flow of RedOx Electrolyte
,”
Phys. Fluids
1070-6631,
17
, p.
067105
.
13.
Wang
,
P. J.
,
Chang
,
C. Y.
, and
Chang
,
M. L.
, 2004, “
Simulation of Two-Dimensional Fully Developed Laminar Flow for a Magneto-Hydrodynamic (MHD) Pump
,”
Biosens. Bioelectron.
0956-5663,
20
, pp.
115
121
.
14.
Zhong
,
J.
,
Yi
,
M.
, and
Bau
,
H. H.
, 2000, “
Magneto Hydrodynamic (MHD) Pump Fabricated With Ceramic Tapes
,”
Sens. Actuators, A
0924-4247,
96
, pp.
59
66
.
15.
Bau
,
H. H.
,
Zhong
,
J.
, and
Yi
,
M.
, 2001, “
A Minute Magneto Hydro Dynamic (MHD) Mixer
,”
Sens. Actuators B
0925-4005,
79
, pp.
207
215
.
16.
Qian
,
S.
,
Zhu
,
J.
, and
Bau
,
H. H.
, 2002, “
A Stirrer for Magnetohydrodynamically Controlled Minute Fluidic Networks
,”
Phys. Fluids
1070-6631,
14
, pp.
3584
3592
.
17.
Qian
,
S.
, and
Bau
,
H. H.
, 2005, “
Magnetohydrodynamic Stirrer for Stationary and Moving Fluids
,”
Sens. Actuators B
0925-4005,
106
, pp.
859
870
.
18.
Xiang
,
Y.
, and
Bau
,
H. H.
, 2003, “
Complex Magnetohydrodynamic Low-Reynolds-Number Flows
,”
Phys. Rev. E
1063-651X,
68
, p.
016312
.
19.
Yi
,
M.
,
Qian
,
S.
, and
Bau
,
H. H.
, 2002, “
A Magnetohydrodynamic Chaotic Stirrer
,”
J. Fluid Mech.
0022-1120,
468
, pp.
153
177
.
20.
Clark
,
E. A.
, and
Fritsch
,
I.
, 2004, “
Anodic Stripping Voltammetry Enhancement by Redox Magnetohydrodynamics
,”
Anal. Chem.
0003-2700,
76
, pp.
2415
2418
.
21.
Eijkel
,
J. C. T.
,
Van den Berg
,
A.
, and
Manz
,
A.
, 2004, “
Cyclic Electrophoretic and Chromatographic Separation Methods
,”
Electrophoresis
0173-0835,
25
, pp.
243
252
.
22.
Gao
,
Y. P.
,
Wei
,
W. Z.
,
Gao
,
X. H.
,
Zhai
,
X. R.
,
Zeng
,
J. X.
, and
Yin
,
J.
, 2007, “
A Novel Sensitive Method for the Determination of Cadmium and Lead Based on Magneto-Voltammetry
,”
Anal. Lett.
0003-2719,
40
, pp.
561
572
.
23.
Lemoff
,
A. V.
, and
Lee
,
A. P.
, 2003, “
An AC Magnetohydrodynamic Microfluidic Switch for Micro Total Analysis Systems
,”
Biomed. Microdevices
1387-2176,
5
, pp.
55
60
.
24.
West
,
J.
,
Karamata
,
B.
,
Lillis
,
B.
,
Gleeson
,
J. P.
,
Alderman
,
J.
,
Collins
,
J. K.
,
Lane
,
W.
,
Mathewson
,
A.
, and
Berney
,
H.
, 2002, “
Application of Magnetohydrodynamic Actuation to Continuous Flow Chemistry
,”
Lab Chip
1473-0197,
2
, pp.
224
230
.
25.
White
,
F. M.
, 2006,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.