Two primary methods for electrostatically actuating microdroplets in channels currently exist: dielectrophoresis (DEP) for electrically insulating fluids and electrowetting on dielectric (EWOD) for conducting fluids. In each case, a transverse electric field is used to create an electrostatic pressure, giving rise to the transport of individual liquid slugs. This paper examines the nature of the force distribution for both EWOD and DEP actuated droplets. The effects of system parameters such as contact angle and electrode length on the shape of the force density and its net integral are considered. A comparison of the scaling properties of DEP and EWOD for applications in digital microfluidics is presented. The net DEP force is shown to be strongly peaked when a droplet interface is located near the edge of a charged electrode and reduces to the well-known lumped parameter model in the appropriate limits. The effect of electrode spacing is seen to have an inversely proportional effect on the force experienced by the droplet, and the effect of increasing droplet contact angle is observed to increase the net force on the droplet.

1.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C. J.
, 2003, “
Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
J. Microelectromech. Syst.
1057-7157,
12
(
1
), pp.
70
80
.
2.
Cooney
,
C. G.
,
Chen
,
C.-Y.
,
Nadim
,
A.
, and
Sterling
,
J. D.
, 2006, “
Electrowetting Droplet Microfluidics on a Single Planar Surface
,”
Microfluid. Nanofluid.
1613-4982,
2
(
5
), pp.
435
446
.
3.
Lee
,
J.
,
Moon
,
H.
,
Fowler
,
J.
,
Kim
,
C. J.
, and
Schoellhammer
,
T.
, 2001, “
Addressable Micro Liquid Handling by Electric Control Of Surface Tension
,”
Proceedings of the IEEE International Conference MEMS
,
Interlaken, Switzerland
, Jan., pp.
499
502
.
4.
Pollack
,
M. G.
,
Fair
,
R. B.
, and
Shenderov
,
A. D.
, 2000, “
Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications
,”
Appl. Phys. Lett.
0003-6951,
77
(
11
), pp.
1725
1726
.
5.
Pollack
,
M. G.
,
Shenderov
,
A. D.
, and
Fair
,
R. B.
, 2002, “
Electrowetting-Based Actuation of Droplets for Integrated Microfluidics
,”
Lab Chip
1473-0197,
2
(
2
), pp.
96
101
.
6.
Shapiro
,
B.
,
Moon
,
H.
,
Garrell
,
R. L.
, and
Kim
,
C. J.
, 2003, “
Equilibrium Behavior of Sessile Drops Under Surface Tension, Applied External Fields, and Material Variations
,”
J. Appl. Phys.
0021-8979,
93
(
9
), pp.
5794
5811
.
7.
Wang
,
K. L.
, and
Jones
,
T. B.
, 2005, “
Electrowetting Dynamics of Microfluidic Actuation
,”
Langmuir
0743-7463,
21
, pp.
4211
4217
.
8.
Charkrabarty
,
K.
, and
Zeng
,
J.
, 2006,
Design Automation Methods and Tools for Microfluidics-Based Biochips
,
Springer
,
New York
.
9.
Baird
,
E.
, and
Mohseni
,
K.
, 2008, “
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro-Systems
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
31
(
1
), pp.
143
151
.
10.
Mohseni
,
K.
, 2005, “
Effective Cooling of Integrated Circuits Using Liquid Alloy Electrowetting
,”
Proceedings of the Semiconductor Thermal Measurement, Modeling, and Management Symposium (SEMI-Therm)
,
San Jose, CA
, Mar. 15–17. IEEE.
11.
Mohseni
,
K.
, and
Baird
,
E.
, 2007, “
Digitized Heat Transfer Using Electrowetting on Dielectric
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
11
(
1&2
), pp.
99
108
.
12.
Mohseni
,
K.
, and
Dolatabadi
,
A.
, 2006, “
An Electrowetting Microvalve: Numerical Simulation
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1077
(
1
), pp.
415
425
.
13.
Dolatabadi
,
A.
,
Mohseni
,
K.
, and
Arzpeyma
,
A.
, 2006, “
Behaviour of a Moving Droplet Under Electrowetting Actuation, Numerical Simulation
,”
Can. J. Chem. Eng.
0008-4034,
84
(
1
), pp.
17
21
.
14.
Chang
,
Y.-J.
,
Mohseni
,
K.
, and
Bright
,
V.
, 2007, “
Fabrication of Tapered SU-8 Structure and Effect of Sidewall Angle for a Variable Focus Microlens Using EWOD
,”
Sens. Actuators, A
0924-4247,
136
(
2
), pp.
546
553
.
15.
Cho
,
S. K.
,
Fan
,
S. K.
,
Moon
,
H.
, and
Kim
,
C. J.
, 2002, “
Towards Digital Microfluidic Circuits: Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation
,” in
Technical Digest. MEMS, Proceedings 15th IEEE International Conference MEMS
, pp.
32
35
.
16.
Fair
,
R. B.
,
Srinivasan
,
V.
,
Ren
,
H.
,
Paik
,
P.
, and
Pollack
,
M. G.
, 2003, “
Electrowetting-Based On-Chip Sample Processing for Integrated Microfluidics
,”
Tech. Dig. - Int. Electron Devices Meet.
0163-1918,
2003
, pp.
32.5.1
32.5.4
.
17.
Moon
,
H.
,
Cho
,
S. K.
,
Garrell
,
R.
, and
Kim
,
C. J.
, 2002, “
Low Voltage Electrowetting-On-Dielectric
,”
J. Appl. Phys.
0021-8979,
92
(
7
), pp.
4080
4087
.
18.
Deval
,
J.
,
Tabeling
,
P.
, and
Ho
,
C. M.
, 2002, “
A Dielectrophoretic Chaotic Mixer
,”
15th IEEE International Conference on MEMS (MEMS 2002)
,
Las Vegas, NV
, pp.
36
39
.
19.
Gascoyne
,
P. R. C.
,
Vykoukal
,
J. V.
,
Schwartz
,
J. A.
,
Anderson
,
T. J.
,
Vykoukal
,
D. M.
,
Current
,
K. W.
,
McConaghy
,
C.
,
Becker
,
F. F.
, and
Andrews
,
C.
, 2004, “
Dielectrophoresis-Based Programmable Fluidic Processors
,”
Lab Chip
1473-0197,
4
(
4
), pp.
299
309
.
20.
Jones
,
T. B.
, 2002, “
On the Relationship of Dielectrophoresis and Electrowetting
,”
Langmuir
0743-7463,
18
, pp.
4437
4443
.
21.
Jones
,
T. B.
,
Fowler
,
J. D.
,
Chang
,
Y. S.
, and
Kim
,
C. J.
, 2003, “
Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation
,”
Langmuir
0743-7463,
19
, pp.
7646
7651
.
22.
Jones
,
T. B.
, and
Wang
,
K. L.
, 2004, “
Frequency-Dependent Electromechanics of Aqueous Liquids, Electrowetting and Dielectrophoresis
,”
Langmuir
0743-7463,
20
, pp.
2813
2818
.
23.
Walker
,
S. W.
, and
Shapiro
,
B.
, 2006, “
Modeling the Fluid Dynamics of Electrowetting on Dielectric (EWOD)
,”
J. Microelectromech. Syst.
1057-7157,
15
(
4
), pp.
986
1000
.
24.
Singh
,
P.
, and
Aubry
,
N.
, 2007, “
Transport and Deformation of Droplets in a Microdevice Using Dielectrophoresis
,”
Electrophoresis
0173-0835,
28
, pp.
644
657
.
25.
Bahadur
,
V.
, and
Garimella
,
S. V.
, 2006, “
An Energy-Based Model for Electrowetting-Induced Droplet Actuation
,”
J. Micromech. Microeng.
0960-1317,
11
(
8
), pp.
1994
1503
.
26.
Baird
,
E.
,
Young
,
P.
, and
Mohseni
,
K.
, 2007, “
Electrostatic Force Calculation for an Ewod-Actuated Droplet
,”
Microfluid. Nanofluid.
1613-4982,
3
(
6
), pp.
635
644
.
27.
Buehrle
,
J.
,
Herminghaus
,
S.
, and
Mugele
,
F.
, 2003, “
Interface Profiles Near Three-Phase Contract Lines in Electric Fields
,”
Phys. Rev. Lett.
0031-9007,
91
(
4
), p.
208301
.
28.
Kang
,
K. H.
, 2002, “
How Electrostatic Fields Change Contact Angle in Electrowetting
,”
Langmuir
0743-7463,
18
(
26
), pp.
10318
10322
.
29.
Vallet
,
M.
,
Vallade
,
M.
, and
Berge
,
B.
, 1999, “
Limiting Phenomena for the Spreading of Water on Polymer Films by Electrowetting
,”
Eur. Phys. J. B
1434-6028,
11
(
4
), pp.
583
591
.
30.
Jackson
,
J. D.
, 1998,
Classical Electrodynamics
,
Wiley
,
New York
.
31.
Landau
,
L. D.
,
Lifshitz
,
E. M.
, and
Pitaevskii
,
L. P.
, 1984,
Electrodynamics of Continuous Media
,
2nd ed.
,
Pergamon
,
New York
, Vol.
8
.
32.
Saville
,
D. A.
, 1984, “
Electrohydrodynamics: The Taylor–Melcher Leaky-Dielectric Model
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
27
64
.
33.
For the electrostatic approximation to apply, the characteristic time scale for electric phenomena, τ=ϵ=σ must be small. Note that τ is the ratio of dielectric permeability to conductivity of the medium. For the microfluidic applications considered here, this condition will usually be valid. For example, pure water has a electrical relaxation time of ≈10−4 and a hydrodynamic time scale of ≈0.045. See (45) for more details.
34.
Penfield
,
P. A.
, and
Haus
,
H. A.
, 1967,
Electrodynamics of Moving Media
,
MIT
,
Cambridge
.
35.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
36.
Woodson
,
H. H.
, and
Melcher
,
J. R.
, 1968,
Electromechanical Dynamics, Part I: Discrete Systems
,
Wiley
,
New York
.
37.
Bobbio
,
S.
, 2000,
Electrodynamics of Materials: Forces, Stresses, and Energies in Solids and Fluids
,
Academic
,
New York
.
38.
Melcher
,
J. R.
, 1981,
Continuum Mechanics
,
MIT
,
Cambridge
.
39.
Woodson
,
H. H.
, and
Melcher
,
J. R.
, 1968,
Electromechanical Dynamics, Part II: Fields, Forces, and Motion
,
Wiley
,
New York
.
40.
Woodson
,
H. H.
, and
Melcher
,
J. R.
, 1968,
Electromechanical Dynamics, Part III: Elastic and Fluid Media
,
John
,
New York
.
41.
Mohseni
,
K.
, and
Baird
,
E.
, 2007, “
A Unified Velocity Model for Digital Microfluidics
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
11
(
1&2
), pp.
109
120
.
42.
If the droplet is initially charged or if it is short cut to the electrodes on one side of the channel while isolated from the electrodes on the other side, there will be another source of force on the droplet represented locally by ρfE. Our approach here can be easily extended to this case as well.
43.
Unless the droplet is isolated only from the electrodes on one side of the channel. In this case the droplet stays at the voltage of the electrodes on the other side of the channel.
44.
Holst
,
T. L.
, 1977, “
Numerical Solution of Axisymmetric Boattail Flow Fields With Plume Simulators
,”
15th Aerospace Sciences Meeting and Exhibit
,
Los Angeles, CA
, Jan. 24–26, Paper No. AIAA 77-224.
45.
Melcher
,
J. R.
, and
Taylor
,
G. I.
, 1969, “
Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
111
146
.
You do not currently have access to this content.