This investigation deals with some exact solutions of the equations governing the steady plane motions of an incompressible third grade fluid by using complex variables and complex functions. Some of the solutions admit, as particular cases, all the solutions of Moro et al. [1990, “Steady Flows of a Third Grade Fluid by Transformation Methods,” ZAMM, 70(3), pp. 189–198]

1.
Rajagopal
,
K. R.
, 1984, “
On the Creeping Flow of the Second-Order Fluid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
15
, pp.
239
246
.
2.
Erdogan
,
M. E.
, 1995, “
Plane Surface Suddenly Set in Motion in a Non-Newtonian Fluid
,”
Acta Mech.
0001-5970,
108
, pp.
179
187
.
3.
Rajagopal
,
K. R.
, and
Gupta
,
A. S.
, 1984, “
An Exact Solution for a Flow of a Steady Flows of a Non-Newtonian Fluid Past an Infinite Porous Plate
,”
Meccanica
0025-6455,
19
, pp.
158
160
.
4.
Bandelli
,
R.
, 1995, “
Unsteady Unidirectional Flows of Second Grade Fluids in Domains With Heated Boundaries
,”
Int. J. Non-Linear Mech.
0020-7462,
30
, pp.
263
269
.
5.
Siddiqui
,
A. M.
, and
Kaloni
,
P. N.
, 1986, “
Certain Inverse Solutions of a Non-Newtonian Fluid
,”
Int. J. Non-Linear Mech.
0020-7462,
21
, pp.
459
473
.
6.
Benharbit
,
A. M.
, and
Siddiqui
,
A. M.
, 1992, “
Certain Solutions of the Equations of the Planar Motion of a Second Grade Fluid for Steady and Unsteady Cases
,”
Acta Mech.
0001-5970,
94
, pp.
85
96
.
7.
Ariel
,
P. D.
, 1994, “
The Flow of a Viscoelastic Fluid Past a Porous Plate
,”
Acta Mech.
0001-5970,
107
, pp.
199
204
.
8.
Ariel
,
P. D.
, 2003, “
Flow of a Third Grade Fluid Through a Porous Flat Channel
,”
Int. J. Eng. Sci.
0020-7225,
41
, pp.
1267
1285
.
9.
Fetecau
,
C.
, 1977, “
Cone and Plate Flow of a Second Grade
,”
Acta Mech.
0001-5970,
122
, pp.
225
230
.
10.
Hayat
,
T.
,
Kara
,
A. H.
, and
Momoniat
,
E.
, 2003, “
Exact Flow of a Third Grade Fluid on a Porous Wall
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
1533
1537
.
11.
Hayat
,
T.
,
Wang
,
Y.
, and
Hutter
,
K.
, 2004, “
Hall Effects on the Unsteady Hydromagnetic Oscillatory Flow of a Second Grade Fluid
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1027
1037
.
12.
Hayat
,
T.
,
Khan
,
M.
,
Siddiqui
,
A. M.
, and
Asghar
,
S.
, 2004, “
Transient Flows of a Second Grade Fluid
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1621
1633
.
13.
Moro
,
L.
,
Siddiqui
,
A. M.
and
Kaloni
,
P. N.
, 1990, “
Steady Flows of a Third Grade Fluid by Transformation Methods
,”
ZAMM
0044-2267,
70
(
3
), pp.
189
198
.
14.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
, 1955, “
Stress-Deformation Relations for Isotropic Materials
,”
J. Rational Mech. Anal.
,
4
, pp.
323
425
.
15.
Fosdic
,
R. L.
, and
Rajagopal
,
K. R.
, 1980, “
Thermodynamics and Stability of Fluids of Third Grade
,”
Proc. R. Soc. London, Ser. A
1364-5021,
339
, pp.
351
377
.
16.
Truessdell
,
C.
, and
Noll
,
W.
, 1965, “
The Non-Linear Field Theories of Mechanics
,” in
Handbuch der physik III, No. 3
,
Springer
,
Berlin
, pp.
494
513
.
17.
Stallybrass
,
M. P.
, 1983, “
A Class of Exact Solution of the Navier-Stokes Equations. Plane Unsteady Flow
,”
Lett. Appl. Eng. Sci.
0090-6913,
21
(
2
), pp.
179
186
.
You do not currently have access to this content.