A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.

1.
Castro
,
I. P.
, 1979, “
Relaxing Wakes Behind Surface-mounted Obstacles in Rough Wall Boundary Layers
,”
J. Fluid Mech.
0022-1120,
93
, pp.
631
659
.
2.
Castro
,
I. P.
, and
Haque
,
A.
, 1987, “
The Structure of a Turbulent Shear Layer Bounding a Separation Region
,”
J. Fluid Mech.
0022-1120,
179
, pp.
439
468
.
3.
Driver
,
D. M.
, and
Seegmiller
,
H. L.
, 1985, “
Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow
,”
AIAA J.
0001-1452,
23
, pp.
83
1712
.
4.
Bradshaw
,
P.
, and
Wong
,
F. Y. F.
, 1972, “
The Reattachment and Relaxation of a Turbulent Shear Layer
,”
J. Fluid Mech.
0022-1120,
52
, pp.
113
135
.
5.
Eaton
,
J. K.
, and
Johnston
,
J. P.
, 1981, “
A Review of Research on Subsonic Turbulent Flow Reattachment
,”
AIAA J.
0001-1452,
19
, pp.
1093
1100
.
6.
Jovic
,
S.
, and
Driver
,
D. M.
, 1995, “
Reynolds Number Effects on the Skin Friction in Separated Flow Behind a Backward Facing Step
,”
Exp. Fluids
0723-4864,
18
, pp.
464
467
.
7.
Jovic
,
S.
, 1996, “
An Experimental Study of a Separated/Reattached Flow Behind a Backward Facing Step. Reh=37000
,” NASA Technical Memorandum 110384.
8.
Ruderich
,
R.
, and
Fernholz
,
H. H.
, 1985, “
An Experimental Investigation of a Turbulent Shear Flow with Separation, Reverse Flow and Reattachment
,”
J. Fluid Mech.
0022-1120,
163
, pp.
53
73
.
9.
Hancock
,
P. E.
, 2002, “
Low Reynolds Number Two-Dimensional Separated and Reattaching Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
410
, pp.
101
122
.
10.
Djilali
,
N.
, and
Gartshore
,
I. S.
, 1991, “
Turbulent Flow Around a Bluff Rectangular Plate. Part I: Experimental Investigation
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
51
59
.
11.
Tillman
,
W.
, 1945, British Min. of Aircraft Prod. Volkenrode Translation MAP-VG 34-45T.
12.
Bergeles
,
G.
, and
Athanassiadis
,
N.
, 1981, “
The Flow Past a Surface-Mounted Obstacles
,”
ASME J. Fluids Eng.
0098-2202,
105
, pp.
461
463
.
13.
Antoniou
,
J.
, and
Bergeles
,
G.
, 1985, “
Development of the Reattached Flow Behind Surface Mounted Two-Dimensional Prisms
,”
ASME J. Fluids Eng.
0098-2202,
110
, pp.
127
133
.
14.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
, 2001, “
Open Channel Boundary Layer Relaxation Behind a Forward Facing Step a Low Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
539
544
.
15.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhaus
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
16.
Nezu
,
I.
, and
Rodi
,
W.
, 1986, “
Open-Channel Flow Measurement With a Laser Doppler Anemometer
,”
J. Hydraul. Eng.
0559-9350,
112
, pp.
335
355
.
17.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
, 2003, “
Low Reynolds Number Effects in Open Channel Turbulent Boundary Layers
,”
Exp. Fluids
0723-4864,
34
, pp.
616
624
.
18.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1995, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
0001-1452,
33
, pp.
1888
1896
.
19.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Debatin
,
K.
, 2000, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
28
, pp.
436
447
.
20.
Brown
,
G. L.
, and
Roshko
,
A.
, 1974, “
On Density Effects of Large Structures in Turbulent Mixing Layers
,”
J. Fluid Mech.
0022-1120,
64
, pp.
775
816
.
21.
Etheridge
,
D. W.
, and
Kemp
,
P. H.
, 1978, “
Measurement of Turbulent Flow Downstream of a Rearward Facing Step
,”
J. Fluid Mech.
0022-1120,
86
, pp.
545
566
.
22.
Wygnanski
,
I.
, and
Fiedler
,
H. E.
, 1970, “
The Two-Dimensional Mixing Region
,”
J. Fluid Mech.
0022-1120,
41
, pp.
327
361
.
23.
Simpson
,
R. L.
,
Chew
,
Y. T.
, and
Shivaprasad
,
B. G.
, 1981, “
The Structure of Separating Turbulent Boundary Layer Part 2. Higher-Order Turbulence Results
,”
J. Fluid Mech.
0022-1120,
113
, pp.
53
73
.
24.
Cutler
,
A. D.
, and
Johnston
,
J. P.
, 1989, “
The Relaxation of a Turbulent Boundary Layer in an Adverse Pressure Gradient
,”
J. Fluid Mech.
0022-1120,
200
, pp.
367
387
.
25.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
, 2001, “
Open Channel Boundary Layer Relaxation Behind a Forward Facing Step at Low Reynolds Numbers
,”
J. Fluids Eng.
0098-2202,
123
, pp.
539
544
.
You do not currently have access to this content.