This article looks at a modification of Taylor–Couette flow, presenting a numerical investigation of the flow around a shrouded rotating cone, with and without throughflow, using the commercial computational fluid dynamics code FLUENT 6.2 and FLUENT 6.3. The effects of varying the cone vertex angle and the gap width on the torque seen by the rotating cone are considered, as well as the effect of a forced throughflow. The performance of various turbulence models are considered, as well as the ability of common wall treatments/functions to capture the near-wall behavior. Close agreement is found between the numerical predictions and previous experimental work, carried out by Yamada and Ito (1979, “Frictional Resistance of Enclosed Rotating Cones With Superposed Throughflow,” ASME J. Fluids Eng., 101, pp. 259–264; 1975, “On the Frictional Resistance of Enclosed Rotating Cones (1st Report, Frictional Moment and Observation of Flow With a Smooth Surface),” Bull. JSME, 18, pp. 1026–1034; 1976, “On the Frictional Resistance of Enclosed Rotating Cones (2nd Report, Effects of Surface Roughness),” Bull. JSME, 19, pp. 943–950). Limitations in the models are considered, and comparisons between two-dimensional axisymmetric models and three-dimensional models are made, with the three-dimensional models showing greater accuracy. The work leads to a methodology for modeling similar flow conditions to Taylor–Couette.

1.
Yamada
,
Y.
, and
Ito
,
M.
, 1979, “
Frictional Resistance of Enclosed Rotating Cones With Superposed Throughflow
,”
ASME J. Fluids Eng.
0098-2202,
101
, pp.
259
264
.
2.
Yamada
,
Y.
, and
Ito
,
M.
, 1975, “
On the Frictional Resistance of Enclosed Rotating Cones (1st Report, Frictional Moment and Observation of Flow With a Smooth Surface)
,”
Bull. JSME
0021-3764,
18
, pp.
1026
1034
.
3.
Yamada
,
Y.
, and
Ito
,
M.
, 1976, “
On the Frictional Resistance of Enclosed Rotating Cones (2nd Report, Effects of Surface Roughness)
,”
Bull. JSME
0021-3764,
19
, pp.
943
950
.
4.
Lord
,
A.
, 1998, “
An Experimental Investigation of Geometric and Oil Flow Effects on Gear Windage and Meshing Losses
,” Ph.D. thesis, University of Wales, Swansea.
5.
Farrall
,
M.
,
Simmons
,
K.
,
Hibberd
,
S.
, and
Young
,
C.
, 2005, “
Computational Investigation of the Airflow Through A Shrouded Bevel Gear
,”
ASME Turbo Expo 2005
,
ASME
.
6.
Johnson
,
G.
,
Simmons
,
K.
,
Stables
,
R.
, and
Young
,
C.
, 2006, “
Reduction in Aeroengine Transmission Gear Windage Loss by Shrouding
,” Performance Enhancing Technologies for Transmission Systems.
7.
Rapley
,
S.
,
Simmons
,
K.
, and
Eastwick
,
C.
, 2007, “
The Application Of CFD To Model Windage Power Loss From A Spiral Bevel Gear
,”
ASME Turbo Expo 2007, ASME
.
8.
Wild
,
P. M.
,
Djilali
,
N.
, and
Vickers
,
G.
, 1996, “
Experimental and Computational Assessment of Windage Lossed in Rotating Machinery
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
116
122
.
9.
Lathrop
,
D. P.
,
Fineberg
,
J.
, and
Swinney
,
H. L.
, 1992, “
Turbulent Flow Between Concentric Rotating Cylinders at Large Reynolds Number
,”
Phys. Rev. Lett.
0031-9007,
68
(
10
), pp.
1515
1518
.
10.
Dubrulle
,
B.
, and
Hersant
,
F.
, 2002, “
Momentum Transport and Torque Scaling in Taylor–Couette Flow From an Analogy With Turbulent Convection
,”
Eur. Phys. J. B
1434-6028,
26
, pp.
379
386
.
11.
Shiomi
,
Y.
,
Nakanishi
,
S.
, and
Kutsuna
,
H.
, 2000, “
CFD Calculation for Two-Phase Flow in Concentric Annulus With Rotating Inner Cylinder
,”
PHOENICS Users Conference Proceedings
, Phoenix.
12.
Launder
,
B.
, and
Spalding
,
D.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
13.
Wilson
,
K.
, 1971, “
Renormalization Group and Critical Phenomena. I Renormalization Group and the Kandoff Scaling Picture
,”
Phys. Rev. B
0556-2805,
4
, pp.
3174
3183
.
14.
Wilson
,
K.
, 1971, “
Renormalization Group and Critical Phenomena. II Phase-Space Cell Analysis of Critical Behaviour
,”
Phys. Rev. B
0556-2805,
4
, pp.
3184
3205
.
15.
Launder
,
B.
,
Reece
,
G.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
16.
Wimmer
,
M.
, 2000, “
Taylor Vortices at Different Geometries
,”
Lect. Notes Phys.
0075-8450,
549
, pp.
194
212
.
17.
Wimmer
,
M.
, 1995, “
An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders
,”
J. Fluid Mech.
0022-1120,
292
, pp.
205
227
.
18.
Noui-Mehidi
,
M. N.
,
Ohmura
,
N.
, and
Kataoka
,
K.
, 2002, “
Mechanism of Mode Selection for Taylor Vortex Flow Between Coaxial Conical Rotating Cylinders
,”
J. Fluids Struct.
0889-9746,
16
, pp.
247
262
.
19.
Noui-Mehidi
,
M. N.
,
Ohmura
,
N.
, and
Kataoka
,
K.
, 2002, “
Gap Effect on Taylor Vortex Size Between Rotating Conical Cylinders
,”
15th Australasian Fluid Mechanics Conference
,
The University of Sydney
,
Sydney, Australia
, Dec.
20.
Noui-Mehidi
,
M. N.
, 2005, “
Effect of Acceleration on Transition Properties in a Conical Cylinder System
,”
Exp. Therm. Fluid Sci.
0894-1777,
29
, pp.
447
456
.
21.
Noui-Mehidi
,
M. N.
,
Ohmura
,
N.
, and
Kataoka
,
K.
, 2005, “
Dynamics of the Helical Flow Between Rotating Conical Cylinders
,”
J. Fluids Struct.
0889-9746,
20
, pp.
331
344
.
22.
Wimmer
,
M.
, and
Zierep
,
J.
, 2000, “
Transition From Taylor Vortices to Cross-Flow Instabilities
,”
Acta Mech.
0001-5970,
140
, pp.
17
30
.
23.
Noui-Mehidi
,
M. N.
,
Ohmura
,
N.
, and
Kataoka
,
K.
, 2002, “
Numerical Computation of Apex Angle Effects on Taylor Vortices in Rotating Conical Cylinder Systems
,”
J. Chem. Eng. Jpn.
0021-9592,
35
, pp.
22
31
.
24.
Hoffman
,
N. P.
, and
Busse
,
F. H.
, 1999, “
Instabilities of Shear Flows Between Two Coaxial Differentially Rotating Cones
,”
Phys. Fluids
1070-6631,
11
, pp.
1676
1678
.
25.
Pereira
,
J. C. F.
, and
Sousa
,
J. M. M.
, 1999, “
Confined Vortex Breakdown Generated by a Rotating Cone
,”
J. Fluid Mech.
0022-1120,
385
, pp.
287
323
.
26.
Wereley
,
S. T.
, and
Lueptow
,
R. T.
, 1999, “
Velocity Field for Taylor–Couette Flow With an Axial Flow
,”
Phys. Fluids
1070-6631,
11
, pp.
3637
3649
.
27.
Noui-Mehidi
,
M. N.
,
Salem
,
A.
,
Legentilhomme
,
P.
, and
Legrand
,
J.
, 1999, “
Apex Angle Effects on the Swirling Flow Between Cones Induced by Means of a Tangential Inlet
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
405
413
.
28.
May
,
N. E.
,
Chew
,
J. W.
, and
James
,
P. W.
, 1994, “
Calculation of Turbulent Flow for an Enclosed Rotating Cone
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
548
554
.
29.
Moureh
,
J.
,
Flick
,
D.
, and
Larrieu
,
P. L.
, 1996, “
Etude hydrodynamique et thermique d’un échangeur de chaleur à noyau tournant conique
,”
Rev. Gen. Therm.
0035-3159,
35
(
414
), pp.
402
407
.
30.
Launder
,
B.
, and
Spalding
,
D.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
New York
.
31.
Wilcox
,
D.
, 1998, “
Turbulence Modeling for CFD
,” DCW Industries, Inc., La Canada, California.
32.
Gibson
,
M. M.
, and
Launder
,
B.
, 1978, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120,
86
, pp.
491
511
.
33.
Launder
,
B.
, 1989, “
Second-Moment Closure: Present…and Future
?,”
Int. J. Heat Fluid Flow
0142-727X,
10
, pp.
282
300
.
34.
Kader
,
B.
, 1981, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
1541
1544
.
35.
FLUENT 6.2 User’s Guide.
You do not currently have access to this content.