An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Wilcox’ original low reynolds number k-ω turbulence model. It is shown that the method is suitable for complex industrial unsteady flows in cases where full large eddy simulations (LESs) are unfeasible. During the simulation, the modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity. The filtered k-ω model is implemented in an in-house computational fluid dynamics (CFD) code, and numerical simulations have been made of strongly swirling flow through a sudden expansion. The new model surpasses the original model in predicting unsteady effects and producing accurate time-averaged results. It is shown to be superior to the wall-adpating local eddy-viscosity (WALE) model on the computational grids considered here, since the turbulence may not be sufficiently resolved for an accurate LES. Because of the adaptive formulation, the filtered k-ω model has the potential to be successfully used in any engineering case where an LES is unfeasible and a Reynolds (ensemble) averaged Navier–Stokes simulation is insufficient.

1.
Spalart
,
P. R.
, 2000, “
Strategies for Turbulence Modeling and Simulations
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
252
263
.
2.
John
,
V.
, 2006, “
Short Review of Some Aspects in LES and VMS
,”
Appl. Math. (Germany)
0862-7940,
51
, pp.
321
353
.
3.
Speziale
,
C. G.
, 1998, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
0001-1452,
36
, pp.
173
184
.
4.
Speziale
,
C. G.
, 1998, “
A Combined Large-Eddy Simulation and Time-Dependent RANS Capability for High-Speed Compressible Flows
,”
J. Sci. Comput.
0885-7474,
13
(
3
), pp.
253
274
.
5.
Fasel
,
H. F.
,
Seidel
,
J.
, and
Wernz
,
S.
, 2002, “
A Methodology for Simulations of Complex Turbulent Flows
,”
J. Fluids Eng.
0098-2202,
124
, pp.
933
942
.
6.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES, First AFOSR International Conference on DNS/LES
,
Ruston, LA
, Aug. 4–8,
C.
Liu
and
Z.
Liu
, eds.
Greyden, Columbus, OH
.
7.
Menter
,
F.
,
Kuntz
,
M.
, and
Egerov
,
Y.
, 2003, “
A Scale Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Vol. AIAA-2003-0767.
8.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
, 2003, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” in
Turbulence, Heat and Mass Transfer
,
Begell House
,
New York
, Vol.
4
.
9.
Kok
,
J. C.
,
Dol
,
H. S.
,
Oskam
,
B.
, and
van der Ven
,
H.
, 2004, “
Extra-Large Eddy Simulation of Massively Separated Flows
,”
42nd AIAA Aerospace Meeting
,
Reno, NV
, pp.
1
12
.
10.
Menter
,
F.
and
Egerov
,
Y.
, 2005, “
A Scale Adaptive Simulation Model Using Two-Equation Models
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Vol. AIAA-2005–1095.
11.
Templeton
,
J. A.
,
Medic
,
G.
, and
Kalitzin
,
G.
, 2005, “
An Eddy-Viscosity Based Near-Wall Treatment for Coarse Grid Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
17
, p.
105101
.
12.
Willems
,
W.
, 1996, “
Numerische Simulation Turbulenter Scherströmungen mit einem Zwei-Skalen Turbulenzmodell
,” Ph.D. thesis, Rheinish-Westfälischen Technischen Hochschule, Aachen, Germany.
13.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
(
11
), pp.
1299
1310
.
14.
Dellenback
,
P. A.
,
Metzger
,
D. E.
, and
Neitzel
,
G. P.
, 1987, “
Measurements in Turbulent Swirling Flow Through an Abrupt Expansion
,”
AIAA J.
0001-1452,
26
(
6
), pp.
669
681
.
15.
Durbin
,
P. A.
, 1995, “
On the k-ε, Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
88
89
.
16.
Helmrich
,
T.
,
Buntic
,
I.
, and
Ruprecht
,
A.
, 2002, “
Very Large Eddy Simulation for Flow in Hydraulic Turbo Machinery
,”
Classics and Fashion in Fluid Mechanics
,
Belgrade, Yugoslavia
, October 18–20.
17.
Ruprecht
,
A.
,
Helmrich
,
T.
, and
Buntic
,
I.
, 2003, “
Very Large Eddy Simulation for the Prediction of Unsteady Vortex Motion
,”
Conference on Modeling Fluid Flow, CMFF'03
,
12th International Conference on Fluid Flow Technologies
,
Budapest, Hungary
, September 3–6.
18.
Gyllenram
,
W.
and
Nilsson
,
H.
, 2006, “
Very Large Eddy Simulations of Draft Tube Flow
,”
23rd IAHR Symposium
,
Yokohama, Japan
, Oct., Vol.
1.2
, pp.
1
10
.
19.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
, 2002, “
LNS—An Approach Towards Embedded LES
,”
40th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Vol. AIAA-2002-0427.
20.
Wilcox
,
D. C.
, 2002,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries Inc.
,
La Cañada, CA
.
21.
Schlüter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
, 2004, “
Large Eddy Simulation Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
0001-1452,
42
(
3
), pp.
478
484
.
22.
Gyllenram
,
W.
,
Nilsson
,
H.
, and
Davidson
,
L.
, 2006, “
Large Eddy Simulation of Turbulent Swirling Flow Through a Sudden Expansion
,”
23rd IAHR Symposium
,
Yokohama, Japan
, Oct., Vol.
1.2
, pp.
1
10
.
23.
Nilsson
,
H.
, 2002, “
Numerical Investigations of Turbulent Flow in Water Turbines
,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.
24.
Van Doormaal
,
J. P.
and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
25.
van Leer
,
B.
, 1974, “
Towards the Ultimate Conservative Difference Scheme Monotonicity and Conservation Combined in a Second Order Scheme
,”
J. Comput. Phys.
0021-9991,
14
, pp.
361
370
.
26.
Nicoud
,
F.
and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based in the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
,
183
200
.
27.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
You do not currently have access to this content.