Thermohydraulic phenomena of a steam-water natural-circulation (SWNC) system are very complicated, particularly, during its start-up and shutdown. Its performance strongly depends on the circulation inside it. Accurate quantification of the flow, void fraction, two-phase level, boiling boundary, etc., is difficult at both steady state and transient states like load variation, start-up, and shutdown. Attempts have been made to develop a high-fidelity thermohydraulic model (five-equation scheme) that caters to nonhomogeneous and thermal nonequilibrium flow to derive the dynamic effect of heating rate on the performance of the SWNC loop of steam generator of an Indian nuclear reactor during steaming-up period. The proposed work also attempts to predict boiling height, flow reversal, and density-wave oscillation (DWO). The boiling channel of the SWNC loop is modeled based on the moving boundary analysis using finite volume method. In this moving boundary problem, both control volumes of single-phase zone and two-phase zone change with time. Numerical results have been presented in this paper. The results indicate that both circulation flow variation and two-phase level variation in steam drum have strong dependency on void fraction in the boiling channel. Flow-reversal phenomenon is identified during the initial stage of boiling. Two-phase swelling and collapse that occur during the start-up are predicted. Above a critical heating rate, DWO has been observed. All these phenomena have been explained.

1.
Ranson
,
V. H.
, and
Wagner
,
R. J.
, 1984, RELAP5∕MOD2 Manual, EGG-SAM-6377, INEL, Id, Apr.
2.
Lahey
,
R. T.
, Jr.
, and
Moody
,
F. J.
, 1993,
The Thermal-Hydraulics of a Boiling Water Nuclear Reactor
,
2nd ed.
,
American Nuclear Society Press
,
Lagrange Park, IL
.
3.
Ishii
,
M.
, 1977, “
One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Report No. ANL-77-47.
4.
Poon
,
K. L.
, 1975, “
Effect of Rapid Steam Take-Off in Natural Circulation and Water Level in Boiling
,”
ASME J. Eng. Power
0022-0825,
97
, pp.
645
654
.
5.
Paruya
,
S.
,
Dhur
,
G. M.
,
Guha
,
C.
, and
Saha
,
P.
, 1998, “
Documentation of Kaiga-1 Real-Time LOCA Simulation Software I: Simulation Methodologies
,” Flotherm Consultants (p) Ltd., Kolkata, India, Dec.
6.
Paruya
,
S.
, and
Bhattacharya
,
P.
, 2004, “
Simulation of the Effect of Boiling Boundary on Startup Performance of a Steam Generator
,”
Proceedings of National Seminar on Technology Upgradation in Process Industries
,
Haldia Institute of Technology
,
Haldia, India
, Aug. 6.
7.
Paniagua
,
J.
,
Rohatgi
,
U. S.
, and
Prasad
,
V.
, 1999, “
Modeling of Thermal Hydraulic Instabilities in Single Heated Channel Loop During Startup Transients
,”
Nucl. Eng. Des.
0029-5493,
193
, pp.
207
226
.
8.
Manera
,
A.
, 2003, “
Experimental and Analytical Investigations on Flashing-Induced Instabilities in Natural Circulation Two-Phase Systems—Applications to the Startup of Boiling Water Reactors
,” Ph.D. thesis, Delft University of Technology, Delft, Netherlands.
9.
Furuya
,
M.
,
Inadaa
,
F.
, and
van der Hagen
,
T. H. J. J.
, 2005, “
Flashing-Induced Density Wave Oscillations in a Natural Circulation BWR—Mechanism of Instability and Stability Map
,”
Nucl. Eng. Des.
0029-5493,
235
, pp.
1557
1569
.
10.
Li
,
B.
,
Chen
,
T.
, and
Yang
,
D.
, 2005, “
DBSSP—A Computer Program for Simulation of Controlled Circulation Boiler and Natural Circulation Boiler Start Up Behavior
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
533
549
.
11.
Frepoli
,
C.
,
Mahaffy
,
J. H.
, and
Hochreiter
,
L. E.
, 2002, “
A Moving Subgrid Model for Simulation of Reflood Heat Transfer
,”
Proceedings of Tenth International Conference on Nuclear Engineering
,
Arlington
, VA, Apr.
14
18
.
12.
Chang
,
C.-J.
, and
Lahey
,
R. T.
, 1997, “
Analysis of Chaotic Instabilities in Boiling Systems
,”
Nucl. Eng. Des.
0029-5493,
167
, pp.
307
334
.
13.
van Bragt
,
D. D. B.
,
de Kruijf
,
W. J. M.
,
Manera
,
A.
,
van der Hagen
,
T. H. J. J.
,
van Dam
,
H.
, 2002, “
Analytical Modeling of Flashing-Induced Instabilities in a Natural Circulation Cooled Boiling Water Reactor
,”
Nucl. Eng. Des.
0029-5493,
215
, pp.
87
98
.
14.
Lee
,
J. D.
, and
Pan
,
C.
, 2005, “
Nonlinear Analysis for a Double-Channel Two-Phase Natural Circulation Loop Under Low-Pressure Conditions
,”
Ann. Nucl. Energy
0306-4549,
32
,
299
329
.
15.
Paruya
,
S.
, and
Bhattacharya
,
P.
, 2006, “
A Moving Boundary Problem in Steam Generator-Choice of Suitable Solution Method
,”
Proceedings of National Conference on Advances in Energy Research
,
IIT
,
Mumbai, India
, Dec. 5–6.
16.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
17.
Ishii
,
M.
, 1975,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris
.
18.
Drew
,
D. A.
, 1983, “
Mathematical Modeling of Two-Phase Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
15
, pp.
261
291
.
19.
Boure
,
J. A.
, and
Delhaye
,
J. M.
, 1982, “
General Equations and Two-Phase Flow Modeling
,”
Handbook of Multiphase Systems
,
G.
Hedsorni
ed.,
McGraw-Hill
,
New York
.
20.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
21.
Fanning
,
J. T.
, 1877,
A Practical Treatise on Water-Supply Engineering
,
Van Nostrand
,
New York
.
22.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two Phase, Two Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
39
48
.
23.
Collier
,
J. G.
, 1972,
Convective Boiling and Condensation
,
McGraw-Hill
,
London
.
24.
Becker
,
K.
,
Hernborg
,
M.
, and
Bode
,
M.
, 1962, “
An Experimental Study of Pressure Gradients for Flow of Boiling Water in Vertical Round Duct
,” January, Parts 1–3, AE 69, 70 and, 85, AB Atomenergi, Studsvik.
25.
Li
,
J.
,
Hesse
,
M.
,
Ziegler
,
J.
, and
Woods
,
A. W.
, 2005, “
An Arbitrary Lagrangian Eulerian Method for Moving-Boundary Problems and Its Application to Jumping Over Water
,”
J. Comput. Phys.
0021-9991,
208
, pp.
289
314
.
26.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
, 1992, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991,
100
, pp.
25
37
.
27.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
,
Jan
,
Y.-J.
, 2001, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
708
759
.
28.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
29.
Ride
,
W. J.
, and
Kothe
,
D. B.
, 1998, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
0021-9991,
141
, pp.
112
152
.
30.
Osher
,
S. J.
, and
Fedkiw
,
R. P.
,
, 2002,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
Berlin
.
31.
Sethian
,
J. A.
, 1996,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science
,
Cambridge University Press
,
Cambridge
.
32.
Tan
,
Z.
,
Tao
,
T.
, and
Zhang
,
Z.
, 2006, “
A Simple Moving Mesh Method for One- and Two-Dimensional Phase-Field Equations
,”
J. Comput. Appl. Math.
0377-0427,
190
, pp.
252
269
.
33.
LeVeque
,
R.
,
Russell
,
R. D.
, and
Ruuth
,
S.
, 2003,
Conference on Computational Techniques for Moving Interfaces
,
Banff, AB, Canada
, Aug. 23–28, Final Report.
34.
Zuber
,
N.
,
Findlay
,
J. A.
, 1965, “
Average Volumetric Concentration in Two-Phase Flow System
,”
ASME J. Heat Transfer
0022-1481,
87
, pp.
453
468
.
35.
Benedek
,
S.
, and
Drew
,
D. A.
, 1998, “
An Analytical Study for Determining the Dynamics of Boiling Boundary
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2735
2742
.
36.
Saha
,
P.
, and
Zuber
,
N.
, 1974, “
Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling
,
Proceedings of the Fifth International Heat Transfer Conference
,” Tokyo, Japan, Vol.
4
, pp.
175
179
.
37.
Kim
,
H.
, and
Choi
,
S.
, 2005,
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
786
796
.
38.
Bell
,
R. D.
, and
Astrom
,
K. J.
, 2000, “
Drum-Boiler Dynamics
,”
Automatica
0005-1098,
36
, pp.
363
378
.
39.
Gear
,
C. W.
, 1971,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Series in Automatic Computation
,
Prentice Hall
,
New York
.
40.
Harlow
,
F. H.
, and
Amsden
,
A. A.
, 1975, “
Numerical Calculation of Multiphase Fluid Flow
,”
J. Comput. Phys.
0021-9991,
17
, pp.
19
52
.
41.
Travis
,
J. R.
,
Harlow
,
F. H.
, and
Amsden
,
A. A.
, 1976, “
Numerical Calculation of Two-Phase Flows
,”
J. Comput. Phys.
0021-9991,
61
, pp.
1
10
.
42.
Liles
,
D. R.
, and
Reed
,
W. H.
, 1978, “
Semi-Implicit Method for Two-Phase Fluid Dynamics
,”
J. Comput. Phys.
0021-9991,
26
, pp.
390
407
.
43.
Walter
,
H.
, and
Linzer
,
W.
, 2005, “
The Influence of the Operating Pressure on the Stability of Natural Circulation Systems
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
327
340
.
44.
Walter
,
H.
, and
Linzer
,
W.
, 2003, “
Flow Reversal in Natural Circulation System
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
2363
2372
.
45.
Wissler
,
E.
,
Isbin
,
H. S.
, and
Amudson
,
N. R.
, 1956, “
Oscillatory Behavior of Two-Phase Natural Circulation Loop
,”
AIChE J.
0001-1541,
2
, pp.
157
162
.
46.
Fukuda
,
K.
,
Kobori
,
T.
, 1979, “
Classification of Two-Phase Flow Stability by Density-Wave Oscillation Model
,”
J. Nucl. Sci. Technol.
0022-3131,
16
, pp.
95
108
.
47.
van der Hagen
,
T. H. J. J.
,
Stekelenburg
,
A. J. C.
, and
van Bragt
,
D. D. B.
, 2000, “
Reactor Experiments on Type-I and Type-II BWR Stability
,
Nucl. Eng. Des.
0029-5493,”
200
, pp.
177
185
.
You do not currently have access to this content.