This paper deals with the utilization of the dynamic characteristics of laminar flow in circular pipes for the indirect measurement of flow rates. A discrete-time state space realization of the transmission line dynamics is computed via inverse Laplace transform and an identification and model reduction method based on the singular value decomposition. This dynamic system is used for the computation of the flow rate at one end of a pipe section. Special attention is paid to the identification of the speed of sound and the dimensionless dissipation number of the pipe section, since exact knowledge of these parameters is crucial for the reliability of the measurement results. First, experimental validation results are given in a limited range of operating frequencies between 100 Hz and 2000 Hz. Flow rate variations within ±1.2l/min have been measured with an uncertainty of ±0.07l/min at the 95% confidence level. The test fluid was mineral oil.

1.
Yokota
,
S.
,
Arai
,
K.
, and
Nakano
,
K.
, 1989, “
Instantaneous Flow Meter for Hydraulic Systems Utilizing the Dynamic Characteristics of Cylindrical Chokes
,”
J. Jpn. Hydraul. Pneum. Soc.
,
20
(
4
), pp.
328
335
.
2.
Manhartsgruber
,
B.
, 2003 “
Instantaneous Liquid Flow Rate Measurement Using the Dynamic Characterisitics of Laminar Flow in Circular Pipes
,”
Proceedings of the Fourth ASME/JSME Joint Fluids Engineering Conference (FEDSM 2003)
,
ASME
,
New York
, ASME Paper No. FEDSM2003-45613.
3.
Stecki
,
J.
, and
Davis
,
D. C.
, 1986, “
Fluid Transmission Lines: Distributed Parameter Models, Part 1: A Review on the State of the Art
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
200
, pp.
215
228
.
4.
D’Souza
,
A. F.
, and
Oldenburger
,
R.
, 1964, “
Dynamic Response of Fluid Lines
,”
ASME J. Basic Eng.
,
86
, pp.
589
598
. 0021-9223
5.
Goodson
,
R. E.
, and
Leonard
,
R. G.
, 1972, “
A Survey of Modeling Techniques for Fluid Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
474
482
. 0021-9223
6.
ISO
, 1993,
Guide to the Expression of Uncertainty in Measurement
,
International Organization for Standardization
,
Geneva
.
7.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
, 1998, “
Convergence Properties of the Nelder-Mead Simplex Algorithm in Low Dimensions
,”
SIAM J. Optim.
1052-6234,
9
(
1
), pp.
112
147
.
8.
MATLAB
, 2004,
Optimization Toolbox User’s Guide
,
5th ed.
,
The MathWorks
,
Natick, MA
.
9.
Zielke
,
W.
, 1968, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
. 0021-9223
10.
Suzuki
,
K.
,
Taketomi
,
T.
, and
Sato
,
S.
, 1991, “
Improving Zielke’s Method of Simulating Frequency Dependent Friction in Laminar Liquid Pipe Flow
,”
ASME Trans. J. Fluids Eng.
0098-2202,
113
(
4
), pp.
569
573
.
11.
Manhartsgruber
,
B.
, 2001, “
Computationally Efficient Time Domain Modeling of Fluid Transmission Lines
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Pittsburgh, PA, Sept. 9–12,
ASME
,
New York
, ASME Paper No. DETC2001/VIB-21406.
12.
Hsue
,
C. Y.-Y.
, and
Hullender
,
D. A.
, 1983, “
Modal Approximations for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines
,”
Fluid Transmission Line Dynamics 1983
,
M. E.
Franke
and
T. M.
Drzewiecki
, eds.,
ASME
,
New York
, pp.
51
77
.
13.
Hosono
,
T.
, 1981, “
Numerical Inversion of Laplace Transform and Some Applications to Wave Optics
,”
Radio Sci.
,
16
(
6
), pp.
1015
1019
. 0048-6604
14.
Weeks
,
W. T.
, 1966, “
Numerical Inversion of Laplace Transforms Using Laguerre Functions
,”
J. Assoc. Comput. Mach.
0004-5411,
13
(
3
), pp.
419
426
.
15.
Kung
,
S. Y.
, 1978, “
A New Identification and Model Reduction Algorithm via Singular Value Decomposition
,”
Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers
, Pacific Grove, CA, Nov. 6-8, pp.
705
714
.
You do not currently have access to this content.