An eddy-viscosity turbulence model employing three additional transport equations is presented and applied to a number of transitional flow test cases. The model is based on the k-ω framework and represents a substantial refinement to a transition-sensitive model that has been previously documented in the open literature. The third transport equation is included to predict the magnitude of low-frequency velocity fluctuations in the pretransitional boundary layer that have been identified as the precursors to transition. The closure of model terms is based on a phenomenological (i.e., physics-based) rather than a purely empirical approach and the rationale for the forms of these terms is discussed. The model has been implemented into a commercial computational fluid dynamics code and applied to a number of relevant test cases, including flat plate boundary layers with and without applied pressure gradients, as well as a variety of airfoil test cases with different geometries, Reynolds numbers, freestream turbulence conditions, and angles of attack. The test cases demonstrate the ability of the model to successfully reproduce transitional flow behavior with a reasonable degree of accuracy, particularly in comparison with commonly used models that exhibit no capability of predicting laminar-to-turbulent boundary layer development. While it is impossible to resolve all of the complex features of transitional and turbulent flows with a relatively simple Reynolds-averaged modeling approach, the results shown here demonstrate that the new model can provide a useful and practical tool for engineers addressing the simulation and prediction of transitional flow behavior in fluid systems.

1.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P. A.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
636
644
.
2.
Savill
,
A. M.
, 1993, “
Some Recent Progress in the Turbulence Modeling of By-Pass Transition
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier
,
Amsterdam
, pp.
829
848
.
3.
Savill
,
A. M.
, 2002, “
By-Pass Transition Using Conventional Closures
,”
Closure Strategies for Turbulent and Transitional Flows
,
Cambridge University Press
,
Cambridge
, pp.
464
492
.
4.
Wilcox
,
D. C.
, 1994, “
Simulation of Transition With a Two Equation Turbulence Model
,”
AIAA J.
0001-1452,
32
, pp.
247
255
.
5.
Hadzic
,
I.
, and
Hanjalic
,
K.
, 1999, “
Separation-Induced Transition to Turbulence: Second Moment Closure Modelling
,”
Flow, Turbul. Combust.
1386-6184,
63
, pp.
153
173
.
6.
Rumsey
,
C. L.
, 2006, “
Apparent Transition Behavior of Widely-Used Turbulence Models
,”
Proceedings of the 36th AIAA Fluid Dynamics Conference
,
San Francisco, CA
, June 5–8,
4
, pp.
2625
2643
.
7.
van Driest
,
E. R.
, and
Blumer
,
C. B.
, 1963, “
Boundary Layer Transition, Free Stream Turbulence, and Pressure Gradient Effects
,”
AIAA J.
0001-1452,
1
, pp.
1303
1306
.
8.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
, pp.
213
228
.
9.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
10.
Fasihfar
,
A.
, and
Johnson
,
M. W.
, 1992, “
An Improved Boundary Layer Transition Correlation
,” ASME Paper No. 92-GT-245.
11.
Praisner
,
T. J.
, and
Clark
,
J. P.
, 2007, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
1
13
.
12.
Dhawan
,
S.
, and
Narasimha
,
R.
, 1958, “
Some Properties of Boundary Layer During the Transition From Laminar to Turbulent Flow Motion
,”
J. Fluid Mech.
0022-1120,
3
, pp.
418
436
.
13.
Greene
,
F. A.
, and
Hamilton
,
H. H.
, 2006, “
Development of a Boundary Layer Properties Interpolation Tool in Support of Orbiter Return to Flight
,”
Proceedings of the Ninth AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
San Francisco, CA
, June 5–8,
1
, pp.
144
160
.
14.
Kozulovic
,
D.
, and
Lapworth
,
L.
, 2007, “
An Approach for Inclusion of a Non-Local Transition Model in a Parallel Unstructured CFD Code
,”
Proceedings of the Fifth Joint ASME/JSME Fluids Engineering Conference
,
San Diego, CA
, July 30–Aug. 2, ASME Paper No. FEDSM2007–37162.
15.
Edwards
,
J. R.
,
Roy
,
C. J.
,
Blottner
,
F. G.
, and
Hassan
,
H. G.
, 2001, “
Development of a One-Equation Transition/Turbulence Model
,”
AIAA J.
0001-1452,
39
, pp.
1691
1698
.
16.
Wang
,
C.
, and
Perot
,
B.
, 2002, “
Prediction of Turbulent Transition in Boundary Layers Using the Turbulent Potential Model
,”
J. Turbul.
1468-5248,
3
,
N22
.
17.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2004, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
193
202
.
18.
Suzen
,
Y. B.
, and
Huang
,
P. G.
, 2000, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
273
284
.
19.
Steelant
,
J.
, and
Dick
,
E.
, 2001, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
22
30
.
20.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
413
422
.
21.
Menter
,
F. R.
,
Langtry
,
R.
, and
Volker
,
S.
, 2006, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
1386-6184,
77
, pp.
277
303
.
22.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2005, “
A CFD Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
52
63
.
23.
York
,
W. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2003, “
Conjugate Heat Transfer Simulation of an Internally-Cooled Turbine Vane With a Predictive Model for Boundary-Layer Transition
,” ASME Paper No. IMECE2003-41555.
24.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2004, “
Prediction of Unsteady, Separated Boundary Layer Over a Blunt Body for Laminar, Turbulent, and Transitional Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
45
, pp.
1291
1315
.
25.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2003, “
Prediction of Boundary-Layer Transition Effects on Turbine Airfoil Profile Losses
,” ASME Paper No. IMECE2003-41420.
26.
Sveningsson
,
A.
, 2006, “
Turbulence Transport Modelling in Gas Turbine Related Applications
,” Ph.D. thesis, Chalmers University of Technology, Sweden.
27.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
, 8th ed.,
Springer-Verlag
,
Berlin
.
28.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
430
, pp.
149
168
.
29.
Klebanoff
,
P. S.
, 1971, “
Effects of Free-Stream Turbulence on a Laminar Boundary Layer
,”
Bull. Am. Phys. Soc.
0003-0503,
16
, p.
1323
.
30.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 2001, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
0022-1120,
428
, pp.
185
212
.
31.
Lardeau
,
S.
,
Li
,
N.
, and
Leschziner
,
M. A.
, 2007, “
Large Eddy Simulation of Transitional Boundary Layers at High Freestream Turbulence Intensity and Implications for RANS Modeling
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
311
317
.
32.
Mayle
,
R. E.
, and
Schulz
,
A.
, 1997, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
405
411
.
33.
Volino
,
R. J.
, 1998, “
A New Model for Free-Stream Turbulence Effects on Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
613
620
.
34.
Lardeau
,
S.
,
Leschziner
,
M. A.
, and
Li
,
N.
, 2004, “
Modeling Bypass Transition With Low-Reynolds-Number Nonlinear Eddy-Viscosity Closure
,”
Flow, Turbul. Combust.
1386-6184,
73
, pp.
49
76
.
35.
Volino
,
R. J.
, and
Simon
,
T. W.
, 1997, “
Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
427
432
.
36.
Leib
,
S. J.
,
Wundrow
,
D. W.
, and
Goldstein
,
M. E.
, 1999, “
Effect of Free-Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer
,”
J. Fluid Mech.
0022-1120,
380
, pp.
169
203
.
37.
Johnson
,
M. W.
, and
Ercan
,
A. H.
, 1999, “
A Physical Model for Bypass Transition
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
95
104
.
38.
Luchini
,
P.
, 2000, “
Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations
,”
J. Fluid Mech.
0022-1120,
404
, pp.
289
309
.
39.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
, 1999, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
1070-6631,
11
, pp.
134
150
.
40.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 1998, “
Shear Sheltering and the Continuous Spectrum of the Orr-Sommerfeld Equation
,”
Phys. Fluids
1070-6631,
10
, pp.
2006
2011
.
41.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
,
227
238
.
42.
Mathur
,
S. R.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
195
216
.
43.
User Guide Fluent 6.3, Fluent Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766, USA.
44.
Moser
,
R.
,
Kim
,
J.
, and
Mansour
,
N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
945
.
45.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
, 2004, “
A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
1047
1051
.
46.
Jaramillo
,
J. E.
,
Perez-Segarra
,
C. D.
,
Oliva
,
A.
, and
Claramunt
,
K.
, 2007, “
Analysis of Different RANS Models Applied to Turbulent Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3749
3766
.
47.
Coupland
,
J.
, 1990, ERCOFTAC Special Interest Group on Laminar to Turbulent Transition and Retransition: T3A and T3B Test Cases.
48.
Coupland
,
J.
, 1990, ERCOFTAC Special Interest Group on Laminar to Turbulent Transition and Retransition: T3C Test Cases.
49.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
255
262
.
50.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2001, “
Detailed Boundary-Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,” ASME Paper No. 2001-GT-0169.
51.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluid Dynamics, TN174.
52.
Gendre
,
P.
, 1992, “
Maximum lift for a single-element airfoils—Experimental Results A-Airfoil
,”
EUROVAL—A European Initiative on Validation of CFD Codes, Notes on Numerical Fluid Mechanics
,
W.
Haase
,
F.
Brandsma
,
E.
Elsholz
,
M.
Leschziner
, and
D. E.
Schwamborn
, eds., Vieweg, Braunschweig, Vol.
42
.
53.
Schmidt
,
S.
, and
Thiele
,
F.
, 2003, “
Detached Eddy Simulation of Flow Around A-Airfoil
,”
Flow, Turbul. Combust.
1386-6184,
71
, pp.
261
278
.
54.
Somers
,
D. M.
, 1989, “
Design and Experimental Results for the S809 Airfoil
,” Airfoils, Inc., State College, PA.
55.
Somers
,
D. M.
, 1997, “
Design and Experimental Results for the S809 Airfoil
,” NREL/SR-440-6918, January 1997.
You do not currently have access to this content.