Non-Newtonian fluid flow in noncircular ducts and microchannels is examined. A simple model is proposed for power law fluids based on the Rabinowitsch–Mooney formulation. By means of a new characteristic length scale, the square root of the cross-sectional area, it is shown that dimensionless wall shear stress can be made a weak function of duct shape. The proposed model is based on the solution for the rectangular duct and has an accuracy of ±10% or better. The current model eliminates the need for tabulated data or equations for several common shapes found in handbooks, namely, circular tube, elliptic tube, parallel channel, rectangular duct, isosceles triangular duct, circular annulus, and polygonal ducts.

1.
Skelland
,
A. H. P.
, 1967,
Non-Newtonian Flow and Heat Transfer
,
Wiley
,
New York
.
2.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
, 1999,
Non-Newtonian Flow in the Process Industries
,
Butterworth-Heinemann
,
Oxford
.
3.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
, 1987,
Handbook of Single Phase Convective Heat Transfer
,
Wiley
,
New York
.
4.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidic Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
568
579
.
5.
Azimain
,
A. R.
, and
Sefid
,
M.
, 2004, “
Performance of Microchannel Heat Sinks With Newtonian and Non-Newtonian Fluids
,”
Heat Transfer Eng.
0145-7632,
25
(
8
), pp.
17
27
.
6.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
7.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2002, “
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts—Part I: Hydrodynamic Problem
,”
Compact Heat Exchangers: A Festschrift on the 60th Birthday of Ramesh K. Shah
,
G. P.
Celata
,
B.
Thonon
,
A.
Bontemps
, and
S.
Kandlikar
, eds.,
Edizioni ETS
,
Italy
, pp.
123
130
.
8.
Bharami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully Developed Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1036
1044
.
9.
Kozicki
,
W.
,
Chou
,
C. H.
, and
Tiu
,
C.
, 1966, “
Non-Newtonian Flow in Ducts of Arbitrary Cross-Sectional Shape
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
665
679
.
10.
Kozicki
,
W.
, and
Tiu
,
C.
, 1968, “
Geometric Parameters for Some Flow Channels
,”
Can. J. Chem. Eng.
,
46
, pp.
389
393
. 0008-4034
11.
Kozicki
,
W.
, and
Tiu
,
C.
, 1971, “
Improved Parametric Characterization of Flow Geometries
,”
Can. J. Chem. Eng.
,
49
, pp.
562
569
. 0008-4034
12.
Sparrow
,
E. M.
, 1962, “
Laminar Flow in Isosceles Triangular Ducts
,”
AIChE J.
0001-1541,
8
, pp.
599
604
.
13.
Lundgren
,
T. S.
,
Sparrow
,
E. M.
, and
Starr
,
J. B.
, 1964, “
Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section
,”
Trans. ASME
,
20
, pp.
620
626
.
14.
Churchill
,
S. W.
, 1987,
Viscous Flows: The Practical Use of Theory
,
Butterworth-Heinemann
,
Boston, MA
.
15.
Bejan
,
A.
, 2000,
Shape and Structure: From Engineering to Nature
,
Cambridge University Press
,
Cambridge, England
.
16.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
, 2007, “
Slip Flow in Non-Circular Micro-Channels
,”
Microfluid. Nanofluid.
1613-4982,
3
(
4
), pp.
473
484
.
This content is only available via PDF.
You do not currently have access to this content.