A study is presented on the fluid-dynamic pulsations and the corresponding dynamic forces generated in a centrifugal pump with single suction and vaneless volute due to blade-volute interaction. Four impellers with different outlet diameters, obtained from progressive cutbacks (trimmings) of the greatest one, were successively considered in the test pump, so that the radial gap between the impeller and the volute ranged from 8.8% to 23.2% of the impeller radius. The study was based on the numerical computation of the unsteady flow through the machine for a number of flow rates by means of the FLUENT code, solving the 3D unsteady Reynolds-averaged Navier–Stokes equations. Additionally, an experimental series of tests was conducted for the pump with one of the impellers, in order to obtain pressure fluctuation data along the volute front wall that allowed contrasting the numerical predictions. The data collected from the numerical computations were used to estimate the dynamic radial forces and torque at the blade-passing frequency, as a function of flow rate and blade-tongue radial gap. As expected, for a given impeller diameter, the dynamic load increases for off-design conditions, especially for the low range of flow rates, whereas the progressive reduction of the impeller-tongue gap brings about corresponding increments in dynamic load. In particular, varying the blade-tongue gap within the limits of this study resulted in multiplying the maximum magnitude of the blade-passing frequency radial force by a factor of about 4 for low flow rates (i.e., below the nominal flow rate) and 3 for high flow rates.

1.
Brennen
,
C. E.
, 1994,
Hydrodynamics of Pumps
,
Oxford University Press and CETI Inc.
,
New York
.
2.
Japikse
,
D.
,
Marscher
,
W. D.
, and
Furst
,
R. B.
, 1997,
Centrifugal Pump Design and Performance
,
Concepts ETI Inc.
,
Wilder, VT
.
3.
Guelich
,
J. F.
, and
Bolleter
,
U.
, 1992, “
Pressure Pulsations in Centrifugal Pumps
,”
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
272
279
.
4.
Kittredge
,
C. P.
, 1985, “
Centrifugal Pumps: General Performance Characteristics
,”
Pump Handbook
,
2nd ed.
,
I. G.
Karassik
,
W. C.
Krutzsch
,
W. H.
Fraser
, and
J. P.
Messina
, eds.,
McGraw-Hill
,
New York
.
5.
Neumann
,
B.
, 1991,
The Interaction Between Geometry and Performance of a Centrifugal Pump
,
Mechanical Engineering
,
London
.
6.
Hasegawa
,
Y.
,
Kikuyama
,
K.
,
Maeda
,
T.
, and
Murakami
,
M.
, 1990, “
Unsteady Pressure Distributions and Forces on the Impeller Blades of a Centrifugal Pump
,”
Proceedings of XV IAHR Symposium 1990
,
Belgrade, Yugoslavia
, Sep. 11–14.
7.
Kaupert
,
K. A.
, and
Staubli
,
T.
, 1999, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller. Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
621
626
.
8.
Parrondo
,
J. L.
,
González
,
J.
, and
Fernández
,
J.
, 2002, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
784
790
.
9.
Hasegawa
,
Y.
,
Kikuyama
,
K.
, and
Maeda
,
T.
, 1990, “
Effects of Blade Number on Hydraulic Force Perturbation on Impeller of Volute-Type Centrifugal Pump
,”
JSME Int. J., Ser. II
0914-8817,
33
(
4
), pp.
736
742
.
10.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
, 1997, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
506
515
.
11.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
, 1995, “
Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
30
35
.
12.
Morgenroth
,
M.
, and
Weaver
,
D. S.
, 1998, “
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
736
743
.
13.
Fatsis
,
A.
,
Pierret
,
S.
, and
Van den Braembussche
,
R.
, 1997, “
Three-Dimensional Unsteady Flow and Forces in Centrifugal Impellers With Circumferential Distortion of the Outlet Static Pressure
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
94
102
.
14.
Van Esch
,
B. P. M.
, and
Kruyt
,
N. P.
, 2001, “
Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
256
264
.
15.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
, 2003, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
73
83
.
16.
Wang
,
H.
, and
Tsukamoto
,
H.
, 2001, “
Fundamental Analysis on Rotor-Stator Interaction in a Diffuser Pump by Vortex Method
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
737
747
.
17.
Shi
,
F.
, and
Tsukamoto
,
H.
, 2001, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
466
474
.
18.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
, 2002, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
348
355
.
19.
Majidi
,
K.
, 2005, “
Numerical Study of Unsteady Flow in a Centrifugal Pump
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
363
371
.
20.
Zhang
,
M.
, and
Tsukamoto
,
H.
, 2005, “
Unsteady Hydrodynamic Forces due to Rotor-Stator Interaction on a Diffuser Pump With Identical Number of Vanes on the Impeller and Diffuser
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
743
751
.
21.
González
,
J.
, and
Santolaria
,
C.
, 2006, “
Unsteady Flow Structures and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
937
946
.
22.
González
,
J.
,
Parrondo
,
J.
,
Santolaria
,
C.
, and
Blanco
,
E.
, 2006, “
Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
454
462
.
23.
Miner
,
S. M.
,
Flack
,
R. D.
, and
Allaire
,
P. E.
, 1992, “
Two Dimensional Flow Analysis of a Laboratory Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
333
339
.
24.
Bachert
,
R.
,
Ludwig
,
G.
, and
Stoffel
,
B.
, 2005, “
Three Dimensional, Impressed Cavitation Effects at the Tongue of the Volute in a Radial Pump
,”
Proceedings of FEDSM, 05
,
Houston, TX
, Jun. 19–23,
ASME
, New York, ASME Paper No. FEDSM2005-77373.
25.
Jekat
,
W. K.
, 1985, “
Centrifugal Pump Theory
,”
Pump Handbook
,
2nd ed.
,
I. G.
Karassik
,
W. C.
Krutzsch
,
W. H.
Fraser
, and
J. P.
Messina
, eds.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.