This research presents some common features of oscillatory airfoils, and the method for indicating dynamic stall onset for the unsteady process. Under deep stall conditions, the stall-onset angle in oscillation is independent of the mean angle of the oscillatory motion, and by combining the reduced frequency and the amplitude of the oscillatory motion, the equivalent reduced pitch rate is an analog of this motion to the constant reduced pitch rate of the ramp-up motion. By correlating with the measured data, and with the ramp-up results, the equivalent reduced pitch rate can be defined as a representation for the oscillatory motion. Accordingly, the triple-parameter problem of an oscillation (mean angle, reduced frequency, and amplitude) degrades into the single-parameter problem (equivalent reduced pitch rate). Based on these foundations, an extension of the stall-onset criterion is then made for oscillatory airfoils: a method of extracting the stall-onset parameters directly from oscillatory test data, and an indication of stall onset for the oscillatory airfoils. The results from the new proposed method have shown the consistency with the data of Glasgow University and the public data.

1.
Harris
,
F. D.
, and
Pruyn
,
R. R.
, 1968, “
Blade Stall—Half Fact, Half Fiction
,”
J. Am. Helicopter Soc.
0002-8711,
13
, pp.
27
48
.
2.
Ham
,
N. D.
, and
Garelick
,
M. S.
, 1968, “
Dynamic Stall Considerations in Helicopter Rotors
,”
J. Am. Helicopter Soc.
0002-8711,
13
, pp.
49
55
.
3.
Carr
,
L. W.
, 1988, “
Progress in Analysis and Prediction of Dynamic Stall
,”
J. Aircr.
0021-8669,
25
, pp.
6
17
.
4.
Carr
,
L. W.
, and
Chandrasekhara
,
M. S.
, 1996, “
Compressibility Effects on Dynamic Stall
,”
Prog. Aerosp. Sci.
0376-0421,
32
, pp.
523
573
.
5.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
, 1997, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
0376-0421,
33
, pp.
759
846
.
6.
McCroskey
,
W. J.
,
McAlister
,
K. W.
,
Carr
,
L. W.
,
Pucci
,
S. L.
,
Lambert
,
O.
, and
Indergrand
,
R. F.
, 1981, “
Dynamic Stall on Advanced Airfoil Sections
,”
J. Am. Helicopter Soc.
0002-8711,
26
, pp.
40
50
.
7.
Bousman
,
W. G.
, 1998, “
A Qualitative Examination of Dynamic Stall From Flight Test Data
,”
J. Am. Helicopter Soc.
0002-8711,
43
, pp.
279
295
.
8.
Bousman
,
W. G.
, 2000, “
Evaluation of Airfoil Dynamic Stall Characteristics for Maneuverability
,”
26th European Rotorcraft Forum
,
The Hague, Netherlands
, Sep. 26–29.
9.
McAlister
,
K. W.
,
Carr
,
L. W.
, and
McCroskey
,
W. J.
, 1978, “
Dynamic Stall Experiments on the NACA 0012 Airfoil
,” NASA, Technical Paper No. 1100.
10.
McCroskey
,
W. J.
, 1976, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
0001-1452,
14
, pp.
57
63
.
11.
Wilby
,
P. G.
, 1980, “
The Aerodynamic Characteristics of Some New RAE Blade Sections, and Their Potential Influence on Rotor Performance
,”
Vertica
0360-5450,
4
, pp.
121
133
.
12.
Galbraith
,
R. A. McD.
, and
Leishman
,
J. G.
, 1983, “
A Micro-Computer Based Test Facility for the Investigation of Dynamic Stall
,”
International Conference on the Use of Micros in Fluid Engineering
,
London, UK
, June,
British Hydromechanics Research Association
, Paper No. E3.
13.
Niven
,
A. J.
,
Galbraith
,
R. A. McD.
, and
Herring
,
D. G. F.
, 1989, “
Analysis of Reattachment During Ramp Down Tests
,”
Vertica
0360-5450,
13
, pp.
187
196
.
14.
Wilby
,
P. G.
, 2001, “
The Development of Rotor Airfoil Testing in the UK
,”
J. Am. Helicopter Soc.
0002-8711,
46
, pp.
210
220
.
15.
Lee
,
T.
, and
Gerontakos
,
P.
, 2004, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
0022-1120,
512
, pp.
313
341
.
16.
Guilmineau
,
E.
, and
Queutey
,
P.
, 1999, “
Numerical Study of Dynamic Stall on Several Airfoil Sections
,”
AIAA J.
0001-1452,
37
, pp.
128
130
.
17.
Spentzos
,
A.
,
Barakos
,
G. N.
,
Badcock
,
K. J.
,
Richards
,
B. E.
,
Wernert
,
P.
,
Schreck
,
S.
, and
Raffel
,
M.
, 2005, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
0001-1452,
43
,
1023
1033
.
18.
Beddoes
,
T. S.
, 1978, “
Onset of Leading Edge Separation Effects Under Dynamic Conditions and Low Mach Number
,”
34th Annual National Forum of the American Helicopter Society
,
Washington DC
, May.
19.
Beddoes
,
T. S.
, 1983, “
Representation of Airfoil Behaviour
,”
Vertica
0360-5450,
7
, pp.
183
197
.
20.
Beddoes
,
T. S.
, 1984, “
Practical Computational of Unsteady Lift
,”
Vertica
0360-5450,
8
, pp.
55
71
.
21.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
, 1989, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
0002-8711,
34
, pp.
3
17
.
22.
Beddoes
,
T. S.
, 1993, “
A Third Generation Model for Unsteady Aerodynamics and Dynamic Stall
,” Westland Helicopter Limited, Report No. RP-908.
23.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
, and
Coton
,
F. N.
, 2007, “
Return From Airfoil Stall During Ramp-Down Pitching Motions
,”
J. Aircr.
0021-8669,
44
(
6
), pp.
1856
1864
.
24.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
,
Coton
,
F. N.
, 2006, “
A New Stall-Onset Criterion for Low Speed Dynamic-Stall
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
461
471
.
25.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
, and
Coton
,
F. N.
, 2007, “
Improved Dynamic Stall Onset Criterion at Low Mach Numbers
,”
J. Aircr.
0021-8669,
44
, pp.
1049
1052
.
26.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
, and
Coton
,
F. N.
, 2008, “
A Modified Dynamic Stall Model for Low Mach Numbers
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
031013
.
27.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
, and
Coton
,
F. N.
, “
A Refined Dynamic Stall Model for the NREL Airfoils
,”
Wind Energy
, to be published.
28.
Ericsson
,
L. E.
, 1995, “
Dynamic Airfoil Flow Separation and Reattachment
,”
J. Aircr.
0021-8669,
32
, pp.
1191
1197
.
29.
Galbraith
,
R. A. McD.
,
Gracey
,
M. W.
, and
Leitch
,
E.
, 1992, “
Summary of Pressure Data for Thirteen Airfoils on the University of Glasgow Airfoil Database
,” University of Glasgow, GU Aero Report No. 9221.
30.
Sheng
,
W.
,
Galbraith
,
R. A. McD.
, and
Coton
,
F. N.
, 2008, “
Applications of Low Speed Dynamic Stall Model to the NREL Airfoils
,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Jan., AIAA-2008-1329.
You do not currently have access to this content.