The performance of wall-modeled large-eddy simulation (WMLES) based on hybrid models, in which the inner region is modeled by Reynolds-averaged Navier–Stokes (RANS) equation and the outer region is resolved by large-eddy simulation (LES), can make the application of LES attainable at high Reynolds numbers. In previous work by various authors, it was found that in most cases a buffer region exists between the RANS and LES zones, in which the velocity gradient is too high; this leads to an inaccurate prediction of the skin-friction coefficient. Artificially perturbing the RANS∕LES interface has been demonstrated to be effective in removing the buffer region. In this work, WMLES has been performed with stochastic forcing at the interface, following the previous work by our group on two nonequilibrium complex flows. From the two flows studied, we conclude that the application of stochastic forcing results in improvements in the prediction of the skin-friction coefficient in the equilibrium regions of these flows, a better agreement with the experiments of the Reynolds stresses in the adverse pressure gradient and the recovery region, and a good agreement of the mean velocity field with experiments in the separation region. Some limitations of this method, especially in terms of CPU requirements, will be discussed.

1.
Chapman
,
D. R.
, 1979, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
0001-1452,
17
, pp.
1293
1313
.
2.
Reynolds
,
W. C.
, 1990, “
The Potential and Limitations of Direct and Large Eddy Simulations
,”
Whither Turbulence? Turbulence at the Crossroads
,
Lecture Notes in Physics
Vol.
357
,
J. L.
Lumley
, ed.,
Springer-Verlag
,
Berlin
, pp.
313
343
.
3.
Spalart
,
P. R.
, 2000, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
252
263
.
4.
Piomelli
,
U.
, and
Balaras
,
E.
, 2002, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
349
374
.
5.
Piomelli
,
U.
, 2008, “
Wall-Layer Models for LES
,” AIAA Paper No. 2008-0603.
6.
Schumann
,
U.
, 1975, “
Subgrid-Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
0021-9991,
18
, pp.
376
404
.
7.
Grötzbach
,
G.
, 1987, “
Direct Numerical and Large Eddy Simulations of Turbulent Channel Flows
,”
Encyclopedia of Fluid Mechanics
, Vol.
6
,
N. P.
Chereminisoff
, ed.,
Gulf
,
West Orange, NJ
, pp.
1337
1391
.
8.
Piomelli
,
U.
,
Ferziger
,
J. H.
,
Moin
,
P.
, and
Kim
,
J.
, 1989, “
New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows
,”
Phys. Fluids A
0899-8213,
1
, pp.
1061
1068
.
9.
Templeton
,
J. A.
,
Medic
,
G.
, and
Kalitzin
,
G.
, 2005, “
An Eddy-Viscosity Based Near-Wall Treatment for Coarse Grid Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
17
(
10
), p.
105101
.
10.
Medic
,
G.
,
Templeton
,
J.
, and
Kalitzin
,
G.
, 2006, “
A Formulation for Near-Wall RANS∕LES Coupling
,”
Int. J. Eng. Sci.
0020-7225,
44
(
17
), pp.
1099
1112
.
11.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M. K.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS∕LES Approach
,”
Advances in DNS∕LES
,
C.
Liu
and
Z.
Liu
, eds.,
Greyden
,
Columbus, OH
, pp.
137
148
.
12.
Nikitin
,
N. V.
,
Nicoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
, 2000, “
An Approach to Wall Modeling in Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
12
, pp.
1629
1632
.
13.
Baggett
,
J. S.
, 1998, “
On the Feasibility of Merging, LES With RANS in the Near-Wall Region of Attached Turbulent Flows
,”
Annual Research Briefs-1998
,
Center for Turbulence Research, Stanford University
,
Stanford, CA
, pp.
267
277
.
14.
Piomelli
,
U.
,
Balaras
,
E.
,
Pasinato
,
H.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
, 2003, “
The Inner-Outer Layer Interface in Large-Eddy Simulations With Wall-Layer Models
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
538
550
.
15.
Keating
,
A.
, and
Piomelli
,
U.
, 2006, “
A Dynamic Stochastic Forcing Method as a Wall-Layer Model for Large-Eddy Simulation
,”
J. Turbul.
1468-5248,
7
(
12
), pp.
1
24
.
16.
Radhakrishnan
,
S.
,
Piomelli
,
U.
,
Keating
,
A.
, and
Silva Lopes
,
A.
, 2006, “
Reynolds-Averaged and Large-Eddy Simulations of Turbulent Non-Equilibrium Flows
,”
J. Turbul.
1468-5248,
7
(
63
), pp.
1
30
.
17.
Hamba
,
F.
, 2003, “
A Hybrid RANS∕LES Simulation of Turbulent Channel Flow
,”
Theor. Comput. Fluid Dyn.
0935-4964,
16
, pp.
387
403
.
18.
Hamba
,
F.
, 2006, “
A Hybrid RANS∕LES Simulation of High-Reynolds-Number Channel Flow Using Additional Filtering at the Interface
,”
Theor. Comput. Fluid Dyn.
0935-4964,
20
, pp.
89
101
.
19.
Temmerman
,
L.
,
Hadziabdic
,
M.
,
Leschziner
,
M. A.
, and
Hanjalic
,
K.
, 2005, “
A Hybrid Two-Layer URANS-LES Approach for Large Eddy Simulation at High Reynolds Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
173
190
.
20.
Davidson
,
L.
, and
Peng
,
S.
, 2003, “
Hybrid LES-RANS Modelling: A One Equation SGS Model Combined With a k‐ω Model for Predicting Recirculating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
43
, pp.
1003
1018
.
21.
Yoshizawa
,
A.
, 1993, “
Bridging Between Eddy-Viscosity-Type and Second-Order Turbulence Models Through a Two-Scale Turbulence Theory
,”
Phys. Rev. E
1063-651X,
48
(
1
), pp.
273
281
.
22.
Davidson
,
L.
, 2005, “
Hybrid LES-RANS: Inlet Boundary Conditions
,”
Third National Conference on Computational Mechanics—MekIT’05
,
B.
Skallerud
and
H.
Andersson
, eds.,
Trondheim, Norway
, May 11–12, pp.
7
22
.
23.
Davidson
,
L.
, and
Billson
,
M.
, 2006, “
Hybrid LES-RANS Using Synthesized Turbulent Fluctuations for Forcing in the Interface Region
,”
Int. J. Heat Fluid Flow
0142-727X,
27
(
6
), pp.
1028
1042
.
24.
Travin
,
A. K.
,
Shur
,
M.
,
Spalart
,
P.
, and
Strelets
,
M. K.
, 2006, “
Improvement of Delayed Detached-Eddy Simulation for LES With Wall Modelling
,”
European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006
,
TU Delft
,
P.
Wesseling
,
E.
Oñate
, and
J.
Pèriaux
, eds.,
Egmond aan Zee, The Netherlands
, pp.
410
432
.
25.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
, 2008, “
A Hybrid RANS∕LES Model With Delayed DES and Wall-Modeled LES Capabilities
,”
Int. J. Heat Fluid Flow
, accepted for publication.
26.
Leonard
,
A.
, 1974, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
0065-2687,
18A
, pp.
237
248
.
27.
Rhie
,
C.
, and
Chow
,
W.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
, pp.
1525
1532
.
28.
Kim
,
J.
, and
Moin
,
P.
, 1985, “
Application of a Fractional Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
0021-9991,
59
, pp.
308
323
.
29.
Silva Lopes
,
A.
, and
Palma
,
J. M. L. M.
, 2002, “
Simulations of Isotropic Turbulence Using a Non-Orthogonal Grid System
,”
J. Comput. Phys.
0021-9991,
175
(
2
), pp.
713
738
.
30.
Silva Lopes
,
A.
,
Piomelli
,
U.
, and
Palma
,
J. M. L. M.
, 2006, “
Large-Eddy Simulation of the Flow in an S-Duct
,”
J. Turbul.
1468-5248,
7
(
11
), pp.
1
24
.
31.
Spalart
,
P.
, and
Allmaras
,
S.
, 1994, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
0034-1223,
1
, pp.
5
21
.
32.
Orlanski
,
I.
, 1976, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
0021-9991,
21
, pp.
251
269
.
33.
Song
,
S.
, and
Eaton
,
J. K.
, 2004, “
Reynolds Number Effects on a Turbulent Boundary Layer With Separation, Reattachment, and Recovery
,”
Exp. Fluids
0723-4864,
36
, pp.
246
258
.
34.
DeGraaff
,
D. B.
, 1999, “
Reynolds Number Scaling of the Turbulent Boundary Layer on a Flat Plate and on a Swept and Unswept Bumps
,” Ph.D. thesis, Stanford University.
35.
Webster
,
D.
,
DeGraaff
,
D. B.
, and
Eaton
,
J. K.
, 1996, “
Turbulence Characteristics of a Boundary Layer Over a Two-Dimensional Bump
,”
J. Fluid Mech.
0022-1120,
320
, pp.
53
69
.
36.
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Prediction of the Three-Dimensional Turbulent Boundary Layer Over a Swept Bump
,”
AIAA J.
0001-1452,
36
(
4
), pp.
505
514
.
You do not currently have access to this content.