We have developed a numerical simulation scheme combining a vortex method and a particle trajectory tracking method, which is applicable to internal unsteady two-phase flows. It is a completely grid-free Lagrangian–Lagrangian simulation, which is able to simulate the primary effect of vortical flow on the unsteady particle motion and dispersion. It can handle unsteady high Reynolds number flows. So far, no one has applied this kind of method internal multiphase flows, though many industrial multiphase flows are internal. In this study, internal liquid-solid two-phase flows in a vertical channel and a mixing tee have been calculated by the new method, in which use of the vortex introduction model enables the simulation of the dynamic behavior of separation or reattachment. In the mixing tee, solid particle phenomena such as depositions or particle-wall collisions have been simulated and measured. Numerical results based on simple two-dimensional flow and one-way model show good agreement with the experimental data. The results show that turbulent vortices dominate particle motion. It has been shown that the present method can be useful in the design of industrial multiphase flows with particle mixing, dispersion, deposition, and particle-wall collision because it is possible to simulate the effect of turbulent vortices on the particle motion.

1.
Crowe
,
C. T.
, 1982, “
Review—Numerical Models for Dilute Gas-Particle Flows
,”
ASME Trans. J. Fluids Eng.
0098-2202,
104
(
3
), pp.
297
303
.
2.
Crowe
,
C. T.
,
Gore
,
R. A.
, and
Troutt
,
T. R.
, 1985, “
Particle Dispersion by Coherent Structures in Free Shear Flows
,”
Part. Sci. Technol.
0272-6351,
3
, pp.
149
158
.
3.
Crowe
,
C. T.
,
Chung
,
J. N.
, and
Troutt
,
T. R.
, 1988, “
Particle Mixing in Free Shear Flows
,”
Prog. Energy Combust. Sci.
0360-1285,
14
, pp.
171
194
.
4.
Hishida
,
K.
,
Ando
,
A.
, and
Maeda
,
M.
, 1992, “
Experiments on Particle Dispersion in a Turbulent Mixing Layer
,”
Int. J. Multiphase Flow
0301-9322,
18
(
2
), pp.
181
194
.
5.
Ishima
,
T.
,
Hishida
,
K.
, and
Maeda
,
M.
, 1993, “
Effect of Particle Residence Time on Particle Dispersion in a Plane Mixing Layer
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
751
759
.
6.
Kamemoto
,
K.
, 2001, “
Engineering Application of the Vortex Methods Developed in Yokohama National University (YNU)
,”
Proceedings of the Second International Conference on Vortex Methods
,
Istanbul, Turkey
, Sept. 26–28, pp.
197
209
.
7.
Ojima
,
A.
, and
Kamemoto
,
K.
, 2000, “
Numerical Simulation of Unsteady Flow Around Three Dimensional Bluff Bodies by an Advanced Vortex Method
,”
JSME Int. J., Ser. B
1340-8054,
43
(
2
), pp.
127
135
.
8.
Kamemoto
,
K.
, and
Ojima
,
A.
, 2000, “
Applicability of the Vortex Methods for Aerodynamics of Heavy Vehicles
,”
The United Engineering Foundation Conference on the Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains
, pp.
503
514
.
9.
Chein
,
R.
, and
Chung
,
J. N.
, 1987, “
Effects of Vortex Pairing on Particle Dispersion in Turbulent Shear Flows
,”
Int. J. Multiphase Flow
0301-9322,
13
(
6
), pp.
785
802
.
10.
Wen
,
F.
,
Kamalu
,
N.
,
Chung
,
J. N.
,
Crowe
,
C. T.
, and
Troutt
,
T. R.
, 1992, “
Particle Dispersion by Vortex Structures in Plane Mixing Layers
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
657
666
.
11.
Perkins
,
R. J.
, and
Joia
,
I. A.
, 1995, “
A Discrete Vortex Model for the Dispersion of Bubbles and Particles in a Plane Jet
,”
Proceedings of the Second International Conference on Multiphase Flow
,
Kyoto, Japan
, April 3–7, Paper No. PT-3, pp.
17
24
.
12.
Wang
,
X. L.
,
Chan
,
H. Y.
,
Wang
,
H. Y.
, and
Zhang
,
H. Q.
, 2001, “
Quantitative Simulation of Gas-Particle Two Phase Plane Mixing Layer Using Discrete Vortex Method
,”
Comput. Mech.
0178-7675,
27
, pp.
418
425
.
13.
Joia
,
I. A.
,
Ory
,
E.
, and
Perkins
,
R. J.
, 1998, “
A Discrete Vortex Model of Particle Laden Jets
,”
Third International Conference on Multiphase Flow, ICMF’98
,
Lyon, France
, June 8–12.
14.
Uchiyama
,
T.
, and
Naruse
,
M.
, 2002, “
Numerical Simulation of Gas-Particle Two-Phase Mixing Layer by Vortex Method
,”
Powder Technol.
0032-5910,
125
, pp.
111
121
.
15.
Uchiyama
,
T.
, and
Fukase
,
A.
, 2005, “
Three-Dimensional Vortex Method for Gas-particle Two-Phase Compound Round Jet
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
32
40
.
16.
Walther
,
J. H.
, and
Koumoutsakos
,
P.
, 2001, “
Three-Dimensional Vortex Methods for Particle-Laden Flows With Two-Way Coupling
,”
J. Comput. Phys.
0021-9991,
167
, pp.
39
71
.
17.
Iso
,
Y.
, and
Kamemoto
,
K.
, 2003, “
Vortex Method for Lagrangian-Lagrangian Simulation Applied to Internal Liquid-Solid Two-Phase Flow
,”
Proceedings of the Second International Conference on Computational Methods in Multiphase Flow
,
Santa Fe, NM
, Nov. 3–5, pp.
159
168
.
18.
Iso
,
Y.
, and
Kamemoto
,
K.
, 2005, “
Vortex Method and Particle Trajectory Tracking Method for Lagrangian-Lagrangian Simulation Applied to Internal Liquid-Solid Two-Phase Flows
,”
Proceedings of the Third International Conference on Vortex Flows and Vortex Models
,
Yokohama, Japan
, Nov. 21–23, pp.
287
292
.
19.
Nakanishi
,
Y.
, and
Kamemoto
,
K.
, 1993, “
Numerical Simulation of Flow Around a Sphere With Vortex Blobs
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105
46–47
, pp.
363
369
.
20.
Wu
,
J. C.
, and
Thompson
,
J. F.
, 1973, “
Numerical Solutions of Time-Dependent Incompressible Navier-Storkes Equations Using an Integro-Differential Formulation
,”
Comput. Fluids
0045-7930,
1
, pp.
197
215
.
21.
Leonard
,
A.
, 1980, “
Review—Vortex Methods for Flow Simulation
,”
J. Comput. Phys.
0021-9991,
37
, pp.
289
335
.
22.
Morsi
,
S. A.
, and
Alexander
,
A. J.
, 1972, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
0022-1120,
55
(
2
), pp.
193
208
.
23.
Maccoll
,
J. H.
, 1928, “
Aerodynamics of a Spinning Sphere
,”
J. R. Aeronaut. Soc.
0368-3931,
32
, pp.
777
798
.
24.
Davies
,
J. W.
, 1970, “
The Aerodynamics of Golf Balls
,”
J. Appl. Phys.
0021-8979,
20
, pp.
821
828
.
25.
Rubinow
,
S. I.
, and
Keller
,
J. B.
, 1961, “
The Transverse Force on Spinning Sphere Moving in a Viscous Fluid
,”
J. Fluid Mech.
0022-1120,
11
, pp.
447
459
.
26.
Oesterle
,
B.
, and
Dinh
,
T. B.
, 1998, “
Experiments on the lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers
,”
Exp. Fluids
0723-4864,
25
, pp.
16
22
.
27.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
;
Saffman
,
P. G.
,1968, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
31
, p.
624
.
28.
Mei
,
R.
, 1992, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Numer
,”
Int. J. Multiphase Flow
0301-9322,
18
(
1
), pp.
145
147
.
29.
Dennis
,
S. C. R.
,
Singh
,
S. N.
, and
Inghan
,
D. B.
, 1980, “
The Steady Flow Due to a Rotating Sphere at Low and Moderate Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
101
(
2
), pp.
257
279
.
30.
Takagi
,
H.
, 1977, “
Viscous Flow Induced by Slow Rotation of a Sphere
,”
J. Phys. Soc. Jpn.
0031-9015,
42
, pp.
319
325
.
31.
Tanaka
,
T.
, and
Tsuji
,
Y.
, 1991, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Vertical Pipe: On the Effect of Inter-Particle Collision
,”
Gas-Solid Flows ASME/FED-121
, pp.
123
128
.
32.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
, 2001, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions
,”
J. Fluid Mech.
0022-1120,
442
, pp.
303
334
.
33.
Tsuji
,
Y.
,
Morikawa
,
Y.
,
Tanaka
,
T.
,
Nakatsukasa
,
N.
, and
Nakatani
,
M.
, 1987, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Two-Dimensional Horizontal Channel
,”
Int. J. Multiphase Flow
0301-9322,
13
(
5
), pp.
671
684
.
34.
Tsuji
,
Y.
,
Oshima
,
T.
, and
Morikawa
,
Y.
, 1985, “
Numerical Simulation of Pneumatic Conveying in a Horizontal Pipe
,”
Kona
0288-4534,
3
, pp.
38
51
.
35.
Hishida
,
K.
,
Hanzawa
,
A.
,
Sakakibara
,
J.
,
Sato
,
Y.
, and
Maeda
,
M.
, 1996, “
Turbulent Structure of Liquid-Solid Two-Phase Channel Flow (I)
,”
JSME
0855-1146,
62
(
593
) pp.
18
25
;
Hishida
,
K.
,
Hanzawa
,
A.
,
Sakakibara
,
J.
,
Sato
,
Y.
, and
Maeda
,
M.
, 1996, “
Turbulent Structure of Liquid-Solid Two-Phase Channel Flow (II)
,”
JSME
0855-1146,
62
(
593
) pp.
26
33
.
36.
Kawashima
,
Y.
,
Nakagawa
,
M.
, and
Iuchi
,
S.
, 1982, “
Characteristics of Mixing Due to Confluent Flow in a Two-Dimensional Right-Angled T-Shaped Flow Section
,”
The Society of Chemical Engineers Japan
,
8
(
2
), pp.
109
114
.
37.
Kawashima
,
Y.
,
Nakagawa
,
M.
, and
Iuchi
,
S.
, 1982, “
Flow Pattern at a Two-Dimensional, Right-Angled, T-Shaped Confluence
,”
The Society of Chemical Engineers Japan
,
8
(
6
), pp.
664
670
.
38.
Blancard
,
J. N.
, and
Brunet
,
Y.
, 1996, “
Interaction Between a Jet Getting Out of a Thin Slit and Emerging Into a Cross Flow
,”
ASME Fluids Eng. Div. Conf.
,
4
, pp.
39
46
.
39.
Khan
,
A. A.
,
Cadavid
,
R.
, and
Wang
,
S. S.-Y.
, 2000, “
Simulation of Channel Confluence and Bifurcation Using the CCHE2D Model
,”
Proc. Inst. Civ. Eng., Waters. Maritime Energ.
0965-0946,
142
, pp.
97
102
.
40.
Takahashi
,
S.
, and
Shiina
,
K.
, 2000, “
Characteristics of Fluid Temperature Fluctuation in a Mixing Tee Pipe With Hot and Cold Water Flows
,”
JSME
0855-1146,
66
(
651
), pp.
2905
2911
.
41.
Eroglu
,
A.
, and
Breidenthal
,
R. E.
, 2001, “
Structure, Penetration, and Mixing of Pulsed Jets in Crossflow
,”
AIAA J.
0001-1452,
39
(
3
), pp.
417
423
.
42.
Iso
,
Y.
, and
Kamemoto
,
K.
, 2006, “
Vortex Method and Particle Trajectory Tracking Method for Liquid-Solid Two-Phase Simulation Extended to Three-Dimensional Internal Flows
,”
The Japanese Society for Multiphase Flow Annual Meeting 2006
,
Kanazawa, Japan
, Aug. 4–6, pp.
326
327
.
43.
Iso
,
Y.
, 2007, “
Application of Vortex Method and Particle Trajectory Tracking Method into Numerical Simulation of Internal Multiphase Flows
,” Ph.D. thesis, Graduate School of Engineering, Yokohama National University, Japan.
You do not currently have access to this content.