A multiple surrogate-based optimization strategy in conjunction with an evolutionary algorithm has been employed to optimize the shape of a simplified hydraulic turbine diffuser utilizing three-dimensional Reynolds-averaged Navier–Stokes computational fluid dynamics solutions. Specifically, the diffuser performance is optimized by changing five geometric design variables to maximize the average pressure recovery factor for two inlet boundary conditions with different swirl, corresponding to different operating modes of the hydraulic turbine. Polynomial response surfaces and radial basis neural networks are used as surrogates, while a hybrid formulation of the NSGA-IIa evolutionary algorithm and a ϵ-constraint strategy is applied to construct the Pareto front from the two surrogates. The proposed optimization framework drastically reduces the computational load of the problem, compared to solely utilizing an evolutionary algorithm. For the present problem, the radial basis neural networks are more accurate near the Pareto front while the response surface performs better in regions away from it. By using a local resampling updating scheme the fidelity of both surrogates is improved, especially near the Pareto front. The optimal design yields larger wall angles, nonaxisymmetrical shapes, and delay in wall separation, resulting in 14.4% and 8.9% improvement, respectively, for the two inlet boundary conditions.

1.
Avellan
,
F.
, 2000, “
Flow Investigation in a Francis Draft Tube: The FLINDT Project
,”
Proceedings of 20th IAHR Symposium on Hydraulic Machinery and Systems
, Charlotte, NC, August 6–9.
2.
Ruprecht
,
A.
,
Helmrich
,
T.
,
Aschenbrenner
,
T.
, and
Scherer
,
T.
, 2002, “
Simulation of Vortex Rope in a Turbine Draft Tube
,”
Proceedings of 22nd IAHR Symposium on Hydraulic Machinery and Systems
, Lausanne, Switzerland, August 9–12.
3.
Turbine-99, 2006, “
The IAHR Workshops on Draft Tube Flow
,” http://www.turbine-99.orghttp://www.turbine-99.org, August 2006.
4.
Shyy
,
W.
,
Papila
,
N.
,
Tucker
,
P. K.
,
Vaidyanathan
,
R.
, and
Griffin
,
L.
, 2000, “
Global Design Optimization for Fluid Machinery Applications
,”
Proceedings of 2nd International Symposium on Fluid Machinery and Fluid Engineering
, Beijing, China, October 22–25, pp.
1
10
.
5.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Optim. Eng.
1389-4420,
23
(
1
), pp.
1
13
.
6.
Shyy
,
W.
,
Papila
,
N.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2001, “
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
,”
Prog. Aerosp. Sci.
0376-0421,
37
, pp.
59
118
.
7.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
8.
Simpson
,
T. W.
,
Booker
,
A. J.
,
Ghosh
,
D.
,
Giunta
,
A. A.
,
Koch
,
P. N.
, and
Yang
,
R.-J.
, 2004, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Optim. Eng.
1389-4420,
27
(
5
), pp.
302
313
.
9.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
0376-0421,
41
(
1
), pp.
1
28
.
10.
Madsen
,
J. I.
,
Shyy
,
W.
, and
Haftka
,
R. T.
, 2000, “
Response Surface Techniques for Diffuser Shape Optimization
,”
AIAA J.
0001-1452,
38
(
9
), pp.
1512
1518
.
11.
Eisinger
,
R.
, and
Ruprecht
,
A.
, 2001, “
Automatic Shape Optimization of Hydro Turbine Components Based on CFD
,”
TASK Q.
1428-6394,
6
(
1
), pp.
101
111
.
12.
Marjavaara
,
B. D.
, and
Lundström
,
T. S.
, 2003, “
Automatic Shape Optimization of a Hydropower Draft Tube
,”
Proceedings of 4th ASME_JSME Joint Fluids Engineering Conference
, Honolulu, HI, July 6–11,
1
(
C
), pp.
1819
1824
.
13.
Marjavaara
,
B. D.
, and
Lundström
,
T. S.
, 2006, “
Redesign of a Sharp Heel Draft Tube by a Validated CFD-Optimization
,”
Int. J. Numer. Methods Fluids
0271-2091,
50
(
8
), pp.
911
924
.
14.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 2002,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,”
Wiley
, New York, NY.
15.
Alexandrow
,
N.
,
Lewis
,
R.
,
Gumbert
,
C.
,
Green
,
L.
, and
Newmann
,
P.
, 2000, “
Optimization With Variable Fidelity Models Applied to Wing Design
,”
Proceedings of the 38th AIAA Aerospace Sciencis Meeting and Exhibit
, Reno, NV, January 10–13, 2000-0841.
16.
Mack
,
Y.
,
Goel
,
T.
,
Shyy
,
W.
,
Haftka
,
R. T.
, and
Queipo
,
N. V.
, 2005, “
Multiple Surrogates for the Shape Optimization of Bluff Body-Facilitated Mixing
,”
Proceedings of the 43rd AIAA Aerospace Sciencis Meeting and Exhibit
, Reno, NV, January 10–13, 2005-0333.
17.
Chankong
,
V.
, and
Haimes
,
Y. Y.
, 1983,
Multiobjective Decision Making Theory and Methodology
,
Elsevier Science
, New York, NY.
18.
Sen
,
P.
, and
Yang
,
J-B.
, 1998,
Multiple Criteria Decision Support in Engineering Design
,
Springer Verlag
, London, UK.
19.
Hämäläinen
,
J. P.
,
Mäkinen
,
R. A. E.
,
Tarvainen
,
P.
, and
Toivanen
,
J.
, 2000, “
Evolutionary Shape Optimization in CFD With Industrial Applications
,”
Proceedings of ECCOMAS 2000 Conference
, Barcelona, Spain, September 11–14.
20.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley Ltd
, Chichester, UK.
21.
Obayashi
,
S.
,
Sasaki
,
D.
,
Sendai
,
A.
, and
Oyama
,
A.
, 2003, “
Finding Tradeoffs by Using Multi-objective Optimization Algorithms
,”
Proceedings EUROGEN’03
, Barcelona, Spain, September 15–17.
22.
Ong
,
Y. S.
,
Nair
,
P. B.
, and
Keane
,
A. J.
, 2003, “
Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
,”
AIAA J.
0001-1452,
41
(
4
), pp.
687
696
.
23.
Goel
,
T.
,
Vaidyanathan
,
R.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
,
Shyy
,
W.
, and
Tucker
,
P. K.
, 2004, “
Response Surface Approximation of Pareto Optimal Front in Multi-objective Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825, in press.
24.
Gibson
,
A. H.
, 1911, “
On the Resistance to Flow of Water Through Pipes or Passages Having Divergent Boundaries
,”
Trans. - R. Soc. Edinbrgh
0080-4568,
48
(
5
), pp.
97
115
.
25.
Kline
,
S. J.
,
Abbott
,
D. E.
, and
Fox
,
R. W.
, 1959, “
Optimum Design of Straight Walled Diffuser
,”
J. Basic Eng.
0021-9223,
81
, pp.
321
329
.
26.
McDonald
,
A. T.
,
Fox
,
R. W.
, and
van Dewoestine
,
R. V.
, 1971, “
Effects of Swirling Flow on Pressure Recovery in Conical Diffusers
,”
AIAA J.
0001-1452,
9
, pp.
2014
2018
.
27.
Moses
,
H. L.
, 1986,
Diffuser Performance for Draft Tube Applications
,
ASCE
, New York, NY, pp.
1218
1227
.
28.
Vu
,
T. C.
, 1989, “
A Design Parameter Study of Turbine Draft Tube by Viscous Flow Analysis
,”
Proceedings of the International Conference on Hydropower (Waterpower ’89)
, Niagara Falls, NY, August 23–25.
29.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
, 2000, “
A Fast and Elitist Multi-objective Genetic Algorithm for Multi-objective Optimization: NSGA-II
,”
Proceedings of the Parallel Problem Solving from Nature VI Conference
, Paris, France, September 18–20, pp.
849
858
.
30.
Deb
,
K.
, and
Goel
,
T.
, 2000, “
Multi-Objective Evolutionary Algorithms for Engineering Shape Design
,”
Evolutionary Optimization
,
R.
Sarker
,
M.
Mohammadin
, and
X.
Yao
, eds.,
Kluwer
, Dordrecht, The Netherlands, pp.
147
176
.
31.
Deb
,
K.
, and
Goel
,
T.
, 2001, “
A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design
,”
Proceedings of Evolutionary Multi-criterion Optimization Conference
, Zurich, Switzerland, March 7–9, pp.
385
399
.
32.
Deb
,
K.
, and
Goel
,
T.
, 2002, “
Hybrid Methods for Multi-Objective Evolutionary Algorithms
,”
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning Computational Intelligence for the E-age, SEAL’02
, Singapore, November 18–22, pp.
188
192
.
33.
Giunta
,
A. A.
,
Dudley
,
J. M.
,
Narducci
,
R.
,
Grossman
,
B.
,
Haftka
,
R.
,
Mason
,
W. H.
, and
Watson
,
L. T.
, 1994, “
Noisy Response and Smooth Approximation in HSCT Design
,”
Proceedings of 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Panama City, FL, September 7–9.
34.
JMP, 2002, The Statistical Discovery SoftwareTM, Release 5.0.1a, SAS Institute, Inc., Cary, NC.
35.
CFX, 2004, CFX-5, Version 5.7.1, ANSYS Europe Ltd., Riseley, UK.
36.
Marjavaara
,
B. D.
,
Kamakoti
,
R.
,
Lundström
,
T. S.
,
Thakur
,
S.
,
Wright
,
J.
, and
Shyy
,
W.
, 2005, “
Steady and Unsteady CFD Simulations of the Turbine-99 Draft Tube Using CFX-5 and STREAM
,”
Proceedings of 3rd IAHR/ERCOFTAC Workshop on Draft Tube Flow
, Porjus, Sweden, December 8–9.
37.
ICEM CFD, 2004, ICEM CFD, Version 5.1, ANSYS, Inc., Canonsburg, PA.
38.
MATLAB, 2004, The Language of Technical Computing, Version 7.0.1, The MathWorks, Inc., Natick, MA.
39.
Beaton
,
A. E.
, and
Tuckey
,
J. W.
, 1974, “
The Fitting of Power Series, Meaning Polynomials, Illustrated on Spectroscopic Data
,”
Technometrics
0040-1706,
16
(
2
), pp.
147
185
.
40.
Goel
,
T.
,
Mack
,
Y.
,
Shyy
,
W.
,
Haftka
,
R. T.
, and
Queipo
,
N. V.
, 2005, “
Numerical and Surrogate Model Uncertainty Assessment for Bluff Body Facilitated Mixing
,”
Proceedings of the 43rd AIAA Aerospace Sciencis Meeting and Exhibit
, Reno, NV, January 10–13, 2005-0125.
You do not currently have access to this content.