Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor γ the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer.

1.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
NY
.
2.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
3.
Truckenbrodt
,
E.
, 1952, “
A Method of Quadrature for the Calculation of the Laminar and Turbulent Boundary Layers in Case of Plane and Rotational Symmetric Flow
,” NACA TM 1379, 1955 (Translated as
Ing.-Arch.
0020-1154,
20
(
4
), pp.
211
228
).
4.
Pohlhausen
,
K.
, 1921, “
Zur Näherungsweisen Integration der Differentialgleichung der Laminaren Reibungsschicht
,”
Z. Angew. Math. Mech.
0044-2267,
1
,
252
268
.
5.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
7th ed.
,
Mc-Graw Hill
,
NY
.
6.
Walsh
,
E. J.
, and
Davies
,
M. R. D.
, 2005, “
Measurements in the Transition Region of a Turbine Blade Profile Under Compressible Conditions
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
400
403
.
7.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
8.
Walsh
,
E. J.
, and
Davies
,
M. R. D.
, 2003 “
Measurement and Prediction of Transition on the Suction Surface of Turbine Blade Profiles
,”
Proceedings of the 5th European Conference on Turbomachinery
, Fluid Dynamics and Thermodynamics, Prague,
Czech Republic
, Paper No. TT01-201.
9.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 2004 “
Effects of Free Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
392
404
.
10.
Boyle
,
R. J.
, and
Simon
,
F. F.
, 1999, “
Mach Number Effects on Turbine Blade Transition Length Prediction
,”
J. Turbomach.
0889-504X,
121
, pp.
694
702
.
11.
Suzen
,
Xiong
,
Y.B.
,
G.
, and
Huang
,
P. G.
, 2002, “
Predictions of Transitional Flows in Low-Pressure Turbines using Intermittency Transport Equation
,”
AIAA J.
0001-1452,
40
, pp.
254
266
.
12.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers-The Effect of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
, pp.
213
228
.
13.
Emmons
,
H. W.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
490
498
.
14.
Dhawan
,
S.
, and
Narasimha
,
R.
, 1958, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
0022-1120,
3
, pp.
418
436
.
15.
Kim
,
J.
, and
Simon
,
T. W.
, 1991, “
Free-Stream Turbulence and Concave Curvature Effects on Heated, Transitional Boundary Layers
” Final Report, Minnesota University, Minneapolis, Department of Mechanical Engineering, Vol.
I
, NASA CR 187150 and Vol.
II
, NASA CR 187151.
16.
Wang
,
T.
, and
Zhou
,
D.
, 1998, “
Conditionally Sampled Flow and Thermal Behaviour of a Transitional Boundary Layer at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
348
357
.
17.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
, 2003, “
Conditional Sampling in a Transitional Boundary Layer under High Free-Stream Turbulence Conditions
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
28
37
.
18.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
, 2003, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation, and Wavelet Analysis
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
251
266
.
19.
Stieger
,
R. D.
, 2002, “
The Effects of Wakes on Separating Boundary Layers in Low Pressure Turbines
,” Ph.D. dissertation, Engineering Department, Cambridge University, Cambridge, UK.
20.
Kim
,
J.
,
Simon
,
T. W.
, and
Kestoras
,
M.
, 1994, “
Fluid Mechanics and Heat Transfer Measurements in Transitional Boundary Layers Conditionally Sampled on Intermittency
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
405
416
.
21.
Dey
,
J.
, 2000, “
On the Momentum Balance in Linear-Combination Models for the Transition Zone
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
587
588
.
22.
Roach
,
P. E.
, and
Brierley
,
D. H.
, 1990, “
The Influence of a Turbulent Free Stream on Zero Pressure Gradient Transitional Boundary Layer Development. Part 1: Test Cases T3A and T3B
,”
Numerical Simulation of Unsteady Flows and Transition to Turbulence
,
Cambridge University Press
, pp.
319
347
.
23.
O’Donnell
,
F. K.
, 2000, “
The Measurement of Aerodynamic Entropy Generation in a Turbine Blade Boundary Layer
,” Ph.D. thesis, Mechanical and Aeronautical Department, University of Limerick, Ireland.
You do not currently have access to this content.