Phase-averaged organized oscillation velocities (U,V,W) and random fluctuation Reynolds stresses (uu¯,vv¯,ww¯,uv¯,uw¯) are presented for the nominal wake of a surface ship advancing in regular head (incident) waves, but restrained from body motions, i.e., the forward-speed diffraction problem. A 3.048×3.048×100m towing tank, plunger wave maker, and towed, 2D particle-image velocimetry (PIV) and servo mechanism wave-probe measurement systems are used. The geometry is DTMB model 5415 (L=3.048m, 146.6 scale), which is an international benchmark for ship hydrodynamics. The conditions are Froude number Fr=0.28, wave steepness Ak=0.025, wavelength λL=1.5, wave frequency f=0.584Hz, and encounter frequency fe=0.922Hz. Innovative data acquisition, reduction, and uncertainty analysis procedures are developed for the phase-averaged PIV. The unsteady nominal wake is explained by interactions between the hull boundary layer and axial vortices and incident wave. There are three primary wave-induced effects: pressure gradients 4%Uc, orbital velocity transport 15%Uc, and unsteady sonar dome lifting wake. In the outer region, the uniform flow, incident wave velocities are recovered within the experimental uncertainties. In the inner, viscous-flow region, the boundary layer undergoes significant time-varying upward contraction and downward expansion in phase with the incident wave crests and troughs, respectively. The zeroth harmonic exceeds the steady-flow amplitudes by 5–20% and 70% for the velocities and Reynolds stresses, respectively. The first-harmonic amplitudes are large and in phase with the incident wave in the bulge region (axial velocity), damped by the hull and boundary layer and mostly in phase with the incident wave (vertical velocity), and small except near the free surface-hull shoulder (transverse velocity). Reynolds stress amplitudes are an order-of-magnitude smaller than for the velocity components showing large values in the thin boundary layer and bulge regions and mostly in phase with the incident wave.

1.
Larsson
,
L.
,
Stern
,
F.
, and
Bertram
,
V.
, 2003, “
Benchmarking of Computational Fluid Dynamics for Ship Flows: The Gothenburg 2000 Workshop
,”
J. Ship Res.
0022-4502,
47
(
1
), pp.
63
81
.
2.
Hino
,
T.
, 2005, CFD Workshop Tokyo Workshop 2005, National Maritime Research Institute.
3.
Kim
,
W. J.
,
Van
,
S. H.
, and
Kim
,
D.-H.
, 2001, “
Measurement of Flows Around Commercial Ship Models
,”
Exp. Fluids
0723-4864,
31
(
5
), pp.
567
578
.
4.
Lee
,
S.-J.
,
Kim
,
H.-R.
,
Kim
,
W.-J.
, and
Van
,
S.-H.
, 2003, “
Wind Tunnel Tests on Flow Characteristics of the KRISO 3,600 TEU Container Ship and 300K VLCC Double-Deck Ship Models
,”
J. Ship Res.
0022-4502,
47
(
1
), pp.
24
38
.
5.
Longo
,
J.
, and
Stern
,
F.
, 2005, “
Uncertainty Assessment for Towing Tank Tests With Example for Surface Combatant DTMB Model 5415
,”
J. Ship Res.
0022-4502,
49
(
1
), pp.
55
68
.
6.
Stern
,
F.
,
Longo
,
J.
,
Penna
,
R.
,
Olivieri
,
A.
,
Ratcliffe
,
T.
, and
Coleman
,
H.
, 2000, “
International Collaboration on Benchmark CFD Validation Data for Naval Surface Combatant
,”
Invited Paper Proceedings of the 23rd ONR Symposium on Naval Hydrodynamics
,
Val de Reuil, France
.
7.
Stern
,
F.
,
Olivieri
,
A.
,
Shao
,
J.
,
Longo
,
J.
, and
Ratcliffe
,
T.
, 2005, “
Statistical Approach for Estimating Intervals of Certification or Biases of Facilities or Measurement Systems Including Uncertainties
,”
J. Fluids Eng.
0098-2202,
127
, pp.
604
610
.
8.
Olivieri
,
A.
,
Pistani
,
F.
,
Avanzini
,
A.
,
Stern
,
F.
, and
Penna
,
R.
, 2001, “
Towing Tank Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake, and Free Surface Flow Around a Naval Combatant INSEAN 2340 Model
,” IIHR Report No. 421, Iowa Institute of Hydraulic Research,
University of Iowa
,
56
pp.
9.
Gui
,
L.
,
Longo
,
J.
, and
Stern
,
F.
, 2001, “
Towing Tank PIV Measurement System, Data and Uncertainty Assessment for DTMB Model 5512
,”
Exp. Fluids
0723-4864,
31
, pp.
336
346
.
10.
Ratcliffe
,
T. J.
,
Mutnick
,
I.
, and
Rice
,
J.
, 2001, “
Stern Wave Topography and Longitudinal Wave Cuts Obtained on Model 5415, With and Without Propulsion
,” NSWCCD-50-TR-2000/028, Bethesda, Maryland.
11.
Olivieri
,
A.
,
Pistani
,
F.
,
Wilson
,
R.
,
Benedetti
,
L.
,
La Gala
,
F.
,
Campana
,
E. F.
, and
Stern
,
F.
, 2004, “
Froude Number and Scale Effects and Froude Number 0.35 Wave Elevations and Mean-Velocity Measurements for Bow and Shoulder Wave Breaking of Surface Combatant DTMB 5415
,” IIHR Report No. 441, IIHR-Hydroscience and Engineering,
University of Iowa
, p.
62
.
12.
Gui
,
L.
,
Longo
,
L.
,
Metcalf
,
B.
,
Shao
,
J.
, and
Stern
,
F.
, 2001, “
Forces, Moment, and Wave Pattern for Surface Combatant in Regular Head Waves-Part 1: Measurement Systems and Uncertainty Assessment
,”
Exp. Fluids
0723-4864,
31
, pp.
674
680
.
13.
Gui
,
L.
,
Longo
,
L.
,
Metcalf
,
B.
,
Shao
,
J.
, and
Stern
,
F.
, 2002, “
Forces, Moment, and Wave Pattern for Naval Combatant in Regular Head Waves-Part 2: Measurement Results and Discussions
,”
Exp. Fluids
0723-4864,
32
, pp.
27
36
.
14.
Felli
,
M.
,
Di Felice
,
F.
, and
Lugni
,
C.
, 2004, “
Experimental Study of the Flow Field Around a Rolling Ship Model
,”
Proceedings of the 25th ONR Symposium on Naval Hydrodynamics
,
St. John’s, Newfoundland, Canada
.
15.
Bishop
,
R.
,
Atsavapranee
,
P.
,
Percival
,
S.
,
Shan
,
J.
, and
Engle
,
A.
, 2004, “
An Investigation of Viscous Roll Damping Through the Application of Particle-Image Velocimetry
,”
Proceedings of the 25th ONR Symposium on Naval Hydrodynamics
,
St. John’s, Newfoundland, Canada
.
16.
Irvine
,
M.
,
Longo
,
J.
, and
Stern
,
F.
, 2004, “
Towing-Tank Tests for Surface Combatant for Free Roll Decay and Coupled Pitch and Heave Motions
,”
Proceedings of the 25th ONR Symposium on Naval Hydrodynamics
,
St. John’s, Newfoundland, Canada
.
17.
Longo
,
J.
,
Gui
,
L.
, and
Stern
,
F.
, 2004, “
Ship Velocity Fields
,”
PIV and Water Waves, Advances in Coastal and Ocean Engineering
,
World Scientific
,
Singapore
.
18.
Fu
,
T. C.
,
Atsavapranee
,
P.
, and
Hess
,
D. E.
, 2002, “
PIV Measurements of the Cross-Flow Wake of a Turning Submarine Model (ONR Body-1)
,” in
Proceedings of the 25th ONR Symposium on Naval Hydrodynamics
,
Fukuoka, Japan
, pp.
154
166
.
19.
Dong
,
R. R.
,
Katz
,
J.
, and
Huang
,
T. T.
, 1997, “
On the Structure of Bow Waves on a Ship Model
,”
J. Phys. (Paris), Colloq.
0449-1947,
346
, pp.
77
115
.
20.
Roth
,
G. I.
,
Mascenik
,
D. T.
, and
Katz
,
J.
, 1999, “
Measurements of the Flow Structure and Turbulence Within a Ship Bow Wave
,”
Phys. Fluids
1070-6631,
11
, pp.
3512
3523
.
21.
Di Felice
,
F.
, and
De Gregorio
,
F.
, 2000, “
Ship Model Wake Analysis by Means of PIV in Large Circulating Water Channel
,” in
Proceedings of the 10th International Offshore and Polar Engineering Conference
,
Seattle, WA
, pp.
392
397
.
22.
Calcagno
,
G.
,
Di Felice
,
F. D.
,
Felli
,
M.
, and
Pereira
,
F.
, 2002, “
Propeller Wake Analysis Behind a Ship by Stereo PIV
,” in
Proceedings of the 24th ONR Symposium on Naval Hydrodynamics
,
Fukuoka, Japan
, pp.
112
127
.
23.
Cotroni
,
A.
,
Di Felice
,
F.
,
Romano
,
G. P.
, and
Elefante
,
M.
, 2000, “
Investigation of the Near Wake of a Propeller Using Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
, pp.
S227
S236
.
24.
Di Felice
,
F.
,
Romano
,
G.
, and
Elefante
,
M.
, 2000, “
Propeller Wake Analysis by Means of PIV
,” in
Proceedings of the 23rd ONR Symposium on Naval Hydrodynamics
,
Val de Reuil, France
, pp.
493
510
.
25.
Judge
,
C. Q.
,
Oweis
,
G. F.
,
Ceccio
,
S. L.
,
Jessup
,
S. D.
,
Chesnakas
,
C. J.
, and
Fry
,
D. J.
, 2001, “
PIV Measurements of a Tip Leakage Vortex
,”
Proceedings of the 26th American Towing Tank Conference
,
Glen Cove, New York
.
26.
Paik
,
B. G.
,
Lee
,
C. M.
, and
Lee
,
S. J.
, 2004, “
PIV Analysis of Flow Around a Container Ship Model With a Rotating Propeller
,”
Exp. Fluids
0723-4864,
36
, pp.
833
846
.
27.
Lee
,
S. J.
,
Paik
,
B. G.
,
Yoon
,
J. H.
, and
Lee
,
C. M.
, 2004, “
Three-Component Velocity Field Measurements of Propeller Wake Using a Stereoscopic PIV Technique
,”
Exp. Fluids
0723-4864,
27
, pp.
575
585
.
28.
Lam
,
K. M.
, and
Leung
,
M. Y. H.
, 2005, “
Asymmetric Vortex Shedding Flow Past an Inclined Flat Plate at High Incidence
,”
Eur. J. Mech. B/Fluids
0997-7546,
24
, pp.
33
48
.
29.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
, 2005, “
Conditional Averaging of PIV Plane Wake Data Using a Cross-Correlation Approach
,”
Exp. Fluids
0723-4864,
39
, pp.
38
47
.
30.
Wernert
,
P.
, and
Favier
,
D.
, 1999, “
Considerations About the Phase Averaging Method With Application to ELDV and PIV Measurements Over Pitching Airfoils
,”
Exp. Fluids
0723-4864,
27
, pp.
473
483
.
31.
Uzol
,
O.
,
Chow
,
Y.-C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2003, “
Average Passage Flow Field and Deterministic Stresses in the Tip and Hub Regions of a Multistage Turbomachine
,”
J. Turbomach.
0889-504X,
125
, pp.
714
725
.
32.
Sung
,
J.
, and
Yoo
,
J. Y.
, 2001, “
Three-Dimensional Phase Averaging of Time-Resolved PIV Measurement Data
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
655
662
.
33.
Druault
,
P.
,
Guibert
,
P.
, and
Alizon
,
F.
, 2005, “
Use of Proper Orthogonal Decomposition for Time Interpolation From PIV
,”
Exp. Fluids
0723-4864,
39
, pp.
1009
1023
.
34.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
,
Gui
,
L.
, and
Stern
,
F.
, 2004b, “
Phase-Averaged Towed PIV Measurements for Regular Head Waves in a Model Ship Towing Tank
,”
PIV and Water Waves, Advances in Coastal and Ocean Engineering
,
World Scientific
,
Singapore
.
35.
Rhee
,
S. H.
, and
Stern
,
F.
, 2001, “
Unsteady RANS Method for Surface Ship Boundary Layer and Wake and Wave Field
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
, pp.
445
478
.
36.
Carrica
,
P.
,
Wilson
,
R.
, and
Stern
,
F.
, 2006, “
Unsteady RANS Simulation of the Ship Forward-Speed Diffraction Problem
,”
Comput. Fluids
0045-7930,
35
, pp.
545
570
.
37.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
, and
Stern
,
F.
, 2005, “
Phase-Averaged Nominal Wake for Surface Ship in Regular Head Waves
,” IIHR Report No. 447, IIHR-Hydroscience and Engineering,
The University of Iowa
,
68
pp.
38.
ITTC
, 2002, “
ITTC Recommended Procedures
,” 23rd International Towing Tank Conference, Venice, Italy.
39.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
,
Gui
,
L.
, and
Stern
,
F.
, 2002, “
Phase-Averaged Towed PIV Measurements for Regular Head Waves in a Model Ship Towing Tank
,”
Proceedings of the PIV and Modeling Water Wave Phenomena
,
Cambridge, UK
.
40.
Gui
,
L.
,
Longo
,
J.
, and
Stern
,
F.
, 2001, “
Biases of PIV Measurement of Turbulent Flow and the Masked Correlation-Based Interrogation
,”
Exp. Fluids
0723-4864,
30
, pp.
27
35
.
41.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
,
Gui
,
L.
, and
Stern
,
F.
, 2002, “
Phase-Averaged PIV for Surface Combatant in Regular Head Waves
,”
Proceedings of the 24th ONR Symposium on Naval Hydrodynamics
,
Fukuoka, Japan
.
42.
Coleman
,
H. W.
, and
Steele
,
G. W.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
275
pp.
43.
Pauley
,
W. R.
, and
Eaton
,
J. K.
, 1988, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
26
(
7
), pp.
816
823
.
44.
Pauley
,
W. R.
, and
Eaton
,
J. K.
, 1989, “
Boundary Layer Turbulence Structure in the Presence of Embedded Streamwise Vortex Pairs
,”
Proceedings of the Seventh Symposium on Turbulent Shear Flows
,
Stanford University
,
Stanford, CA
.
45.
Longo
,
J.
,
Rhee
,
S.-H.
,
Kuhl
,
D.
,
Metcalf
,
B.
,
Rose
,
R.
, and
Stern
,
F.
, 1998, “
IIHR Towing-Tank Wave maker
,”
Proceedings of the 25th ATTC
,
Iowa City, IA
.
You do not currently have access to this content.