This paper presents comparisons between two-dimensional (2D) CFD simulations and experimental investigations of the cavitating flow around a symmetrical 2D hydrofoil. This configuration was proposed as a test case in the “Workshop on physical models and CFD tools for computation of cavitating flows” at the 5th International Symposium on cavitation, which was held in Osaka in November 2003. The calculations were carried out in the ENSTA laboratory (Palaiseau, France), and the experimental visualizations and measurements were performed in the IRENav cavitation tunnel (Brest, France). The calculations are based on a single-fluid approach of the cavitating flow: the liquid/vapor mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. Results presented in the paper focus on cavitation inception, the shape and the general behavior of the sheet cavity, lift and drag forces without and with cavitation, wall pressure signals around the foil, and the frequency of the oscillations in the case of unsteady sheet cavitation. The ability of the numerical model to predict successively the noncavitating flow field, nearly steady sheet cavitation, unsteady cloud cavitation, and finally nearly supercavitating flow is discussed. It is shown that the unsteady features of the flow are correctly predicted by the model, while some subtle arrangements of the two-phase flow during the condensation process are not reproduced. A comparison between the peer numerical results obtained by several authors in the same flow configuration is also performed. Not only the cavitation model and the turbulence model, but also the numerical treatment of the equations, are found to have a strong influence on the results.

1.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tagaya
,
Y.
, and
Tanimura
,
M.
, 1997, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
788
795
.
2.
Pham
,
T. M.
,
Larrarte
,
F.
, and
Fruman
,
D. H.
, 1999, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
289
296
.
3.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
, 2001, “
Partial Cavity Flows. Part 1. Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
0022-1120,
431
, pp.
1
41
.
4.
Leroux
,
J.-B.
,
Astolfi
,
J.-A.
, and
Billard
,
Y.
, 2004, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
94
101
.
5.
Delannoy
,
Y.
, and
Kueny
,
J. L.
, 1990, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,”
Cavitation and Multiphase Flow Forum
,
ASME
, New York, ASME-FED Vol.
98
, pp.
153
158
.
6.
Chen
,
Y.
, and
Heister
,
S. D.
, 1995, “
Modeling Hydrodynamic Non-Equilibrium in Bubbly and Cavitating Flows
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
172
178
.
7.
Singhal
,
A. K.
,
Ly
,
H. Y.
,
Athavale
,
M. M.
, and
Jiang
,
Y.
, 2001, “
Mathematical Basis and Validation of the Full Cavitation Model
,” ASME FEDSM 01, New Orleans.
8.
Kunz
,
R.
,
Boger
,
D.
,
Stinebring
,
D.
,
Chyczewski
,
T.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Implicit Method for Two-Phase Flows with Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
(
8
), pp.
849
875
.
9.
Song
,
C. C. S.
, and
Qin
,
Q.
, 2001, “
Numerical Simulation of Unsteady Cavitating Flow
,”
Proceedings of the Fourth International Symposium on Cavitation
,
California Institute of Technology
, Pasadena, June 20–23 (available on http://cav2001.library.caltech.edu/http://cav2001.library.caltech.edu/).
10.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
, 1998, “
Computational Modelling of the Dynamics of Sheet Cavitation
,”
Proc. of 3rd Intl. Symp. On Cavitation
,
J. M.
Michel
and
H.
Kato
, eds., Editions, Grenoble, Vol.
2
, pp.
307
314
.
11.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1992, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
0022-1120,
240
, pp.
59
96
.
12.
Reboud
,
J.-L.
,
Stutz
,
B.
, and
Coutier
,
O.
, 1998, “
Two Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
Proc. of 3rd Int. Symp. on Cavitation
,
J. M.
Michel
and
H.
Kato
, eds., Editions, Grenoble, pp.
39
44
.
13.
Yuan
,
W.
, and
Schnerr
,
G. H.
, 2002, “
Optimization of Two-Phase Flow in Injection Nozzles–Interaction of Cavitation and External Jet Formation
,”
Proc. of ASME Fluids Engineering Division, Summer Meeting
, Montreal, July 14–18,
ASME
, New York, CD-ROM.
14.
Coutier-Delgosha
,
O.
,
Reboud
,
J.-L.
, and
Delannoy
,
Y.
, 2003, “
Numerical Simulations in Unsteady Cavitating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
, pp.
527
548
.
15.
Pouffary
,
B.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
, 2003, “
Numerical Prediction of Cavitating Flow Around a 2D Hydrofoil: A Barotropic Approach
,” Fifth Int. Symp. on Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-5.
16.
Wu
,
J.
,
Utturkar
,
Y.
, and
Shyy
,
W.
, 2003, “
Assessment of Modeling Strategies for Cavitating Flow Around a Hydrofoil
,” Fifth Int. Symp. on Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-7.
17.
Johansen
,
S.
,
Wu
,
J.
, and
Shyy
,
W.
, 2003, “
Filter-Based Unsteady RANS Computations
,” Technical Report, University of Florida (unpublished).
18.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.-L.
, 2003, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
38
45
.
19.
Kunz
,
R. F.
,
Lindau
,
J. W.
,
Kaday
,
T. A.
, and
Peltier
,
L. J.
, 2003, “
Unsteady RANS and Detached Eddy Simulations of Cavitating Flow over a Hydrofoil
,” 5th Int. Symp. on Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-12.
20.
Arndt
,
R. E. A.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
, 2000, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Proc. of 23rd Symposium on Naval Hydrodynamics
, Office of Naval Research, Val de Reuil, France,
National Academic Press
, Washington, DC, pp.
599
615
.
21.
Leroux
,
J. B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
, 2005, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
1070-6631,
17
(
5
),
052101
.
22.
Knapp
,
R. T.
,
Daily
,
J. T.
, and
Hammit
,
F. G.
, 1970,
Cavitation
,
McGraw-Hill
, New York.
23.
Charles
,
N.
, 1994, “
Modélisation d’Écoulements Cavitants Avec Effets Thermodynamiques
,” Ph.D. thesis, Institut National Polytechnique de Grenoble, France.
24.
Zhu
,
J.
, 1991, “
A Low Diffusive and Oscillation-Free Convection Scheme
,”
Commun. Appl. Numer. Methods
0748-8025,
7
, pp.
225
232
.
25.
Patankar
,
S. V.
, 1981,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
26.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
, 2002, “
Simulation of Unsteady Cavitation With a Two-Equations Turbulence Model Including Compressibility Effects
,”
J. Turbul.
1468-5248,
3
,
058
, http://jot.iop.orghttp://jot.iop.org.
27.
Wilcox
,
D.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries
, La Canada, CA.
28.
Orszag
,
S. A.
, 1993,
Renormalization Group Modelling and Turbulence Simulations, Near Wall Turbulent Flows
,
Elsevier
, Amsterdam.
29.
Acosta
,
A. J.
, 1955, “
A Note on Partial Cavitation of Flat Plate Hydrofoils
,”
California Institute of Technology
, Report No. E-19.9.
30.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
, 1993, “
Partial Cavities: Global Behaviour and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
243
248
.
31.
Joussellin
,
F.
,
Delannoy
,
Y.
,
Sauvage-Boutar
,
E.
, and
Goirand
,
B.
, 1991, “
Experimental Investigation on Unsteady Attached Cavities
,”
Cavitation’91
,
ASME
, New York, Vol.
116
, pp.
61
66
.
32.
Stutz
,
B.
, and
Reboud
,
J.-L.
, 1997, “
Two-Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
1070-6631,
9
, pp.
3678
3686
.
33.
Qin
,
Q.
,
Song
,
C. C. S.
, and
Arndt
,
R. E. A.
, 2003, “
A Virtual Single-Phase Natural Cavitation Model and Its Application to Cav2003 Hydrofoil
,” Fifth Int. Symp. on Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-4.
34.
Song
,
C. C. S.
, and
He
,
J.
, 1998, “
Numerical Simulations of Cavitating Flows With a Single-Phase Approach
,”
Proc. of 3rd International. Symposium on Cavitation
,
J. M.
Michel
and
H.
Kato
, eds., April 7–10,
Song and He
, Grenoble, pp.
295
300
.
35.
Saito
,
Y.
,
Nakamori
,
I.
, and
Ikohagi
,
T.
, 2003, “
Numerical Analysis of Unsteady Vaporous Cavitating Flow Around a Hydrofoil
,” 5th Int. Symp. on Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-6.
36.
Kawamura
,
T.
, and
Saokoda
,
M.
, 2003, “
Comparison of Bubble and Sheet Cavitation Models for Simulation of Cavitating Flow Over a Hydrofoil
,” 5th Int. Symp. On Cavitation (Cav2003), Osaka, Nov. 1–4, Paper No. cav03-OS-1-8.
37.
Kinnas
,
S. A.
,
Sun
,
H.
, and
Lee
,
H.
, 2003, “
Numerical Analysis of Viscous Flow Around the Cavitating CAV2003 Hydrofoil
,” Fifth Int. Symp. On Cavitation (Cav2003), Osaka, November 1–4, Paper No. cav03-OS-1-10.
38.
Qin
,
Q.
, 2004, “
Numerical Modeling of Natural and Ventilated Cavitating Flows
,” Ph.D. thesis, University of Minnesota.
You do not currently have access to this content.