Plastics blow molding has grown rapidly for the past couple of decades. Annular parison extrusion is a critical stage in extrusion blow molding. In this work, numerical simulations on the parison extrusion were performed using finite element (FE) method and the Kaye-Bernstein-Kearsley-Zapas type constitutive equation. A total of 100 simulations was carried out by changing the extrusion die inclination angle, die gap, and parison length. Then a backpropagation artificial neural network (ANN) was proposed as a tool for modeling the parison extrusion using the numerical simulation results. The network architecture determination and the training process of the ANN model were discussed. The predictive ability of the ANN model was examined through several sets of FE simulation results different from those utilized in the training stage. The effects of the die inclination angle, die gap, and parison length on the parison swells can be predicted using the ANN model. The results showed that the die gap has a smaller effect on the diameter swell but a greater effect on the thickness swell. Both diameter and thickness swells increase as the die inclination angle increases. The hybrid method combining the FE and ANN can shorten the time for the predictions drastically and help search out the processing conditions and/or die geometric parameters to obtain optimal parison thickness distributions.

1.
Rosato
,
D. V.
,
Rosato
,
A. V.
, and
DiMattia
,
D. P.
, eds., 2004,
Blow Molding Handbook
, 2nd ed.,
Hanser
, Munic.
2.
Orbey
,
N.
, and
Dealy
,
J. M.
, 1984, “
Isothermal Swell of Extrudate From Annular Dies; Effects of Die Geometry, Flow Rate, and Resin Characteristics
,”
Polym. Eng. Sci.
0032-3888,
24
, pp.
511
518
.
3.
Luo
,
X. L.
, and
Mitsoulis
,
E.
, 1989, “
Memory Phenomena in Extrudate Swell Simulations for Annular Dies
,”
J. Rheol.
0148-6055,
33
, pp.
1307
1327
.
4.
Garcia-Rejon
,
A.
,
DiRaddo
,
R. W.
, and
Ryan
,
M. E.
, 1995, “
Effect of Die Geometry and Flow Characteristics on Viscoelastic Annular Swell
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
60
, pp.
107
128
.
5.
Tanoue
,
S.
,
Kajiwara
,
T.
,
Iemoto
,
Y.
, and
Funatsu
,
K.
, 1998, “
High Weissenberg Number Simulation of an Annular Extrudate Swell Using the Differential Type Constitutive Equation
,”
Polym. Eng. Sci.
0032-3888,
38
, pp.
409
419
.
6.
Laroche
,
D.
,
Kabanemi
,
K. K.
,
Pecora
,
L.
, and
DiRaddo
,
R. W.
, 1999, “
Integrated Numerical Modeling of the Blow Molding Process
,”
Polym. Eng. Sci.
0032-3888,
39
, pp.
1223
1233
.
7.
Otsuki
,
Y.
,
Kajiwara
,
T.
, and
Funatsu
,
K.
, 1999, “
Numerical Simulations of Annular Extrudate Swell Using Various Types of Viscoelastic Models
,”
Polym. Eng. Sci.
0032-3888,
39
, pp.
1969
1981
.
8.
Tanifuji
,
S. I.
,
Kikuchi
,
T.
,
Takimoto
,
J. I.
, and
Koyama
,
K.
, 2000, “
Overall Numerical Simulation of Extrusion Blow Molding Process
,”
Polym. Eng. Sci.
0032-3888,
40
, pp.
1878
1893
.
9.
DiRaddo
,
R. W.
, and
Garcia-Rejon
,
A.
, 1993, “
On-Line Prediction of Final Part Dimensions in Blow Molding: A Neural Network Computing Approach
,”
Polym. Eng. Sci.
0032-3888,
33
, pp.
653
664
.
10.
DiRaddo
,
R. W.
, and
Garcia-Rejon
,
A
.
, 1993, “
Modeling of Membrane Inflation in Blow Molding: Neural Network Prediction of Initial Dimensions From Final Part Specifications
,”
Adv. Polym. Technol.
0730-6679,
12
, pp.
3
24
.
11.
Huang
,
H. X.
, and
Liao
,
C. M.
, 2002, “
Prediction of Parison Swell During Extrusion Blow Molding Using Neural Network Method
,”
Polym. Test.
0142-9418,
21
, pp.
745
749
.
12.
Huang
,
H. X.
, and
Lu
,
S.
, 2005, “
Modeling Parison Formation in Extrusion Blow Molding by Neural Networks
,”
J. Appl. Polym. Sci.
0021-8995,
96
, pp.
2230
2239
.
13.
Huang
,
H. X.
, and
Lu
,
S.
, 2005, “
Neural Modeling of Parison Extrusion in Extrusion Blow Molding
,”
J. Reinf. Plast. Compos.
0731-6844,
24
, pp.
1025
1034
.
14.
Wagner
,
M. H.
, 1978, “
A Constitutive Analysis of Uniaxial Elongational Flow Data of Low-Density Polyethylene Melt
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
4
, pp.
39
55
.
15.
Tanner
,
R. I.
, 2000,
Engineering Rheology
, 2nd ed.,
Oxford University Press
, New York.
16.
Fluent Inc.
, 2001, Polyflow 3.9 User’s Guide.
17.
Cybenko
,
G.
, 1989, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
0932-4194,
2
, pp.
303
314
.
18.
Rumelhart
,
D. E.
,
McClelland
,
J. L.
, and PDP Research Group
, eds., 1986,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
,
MIT Press
, Cambridge, MA.
19.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
, 1994, “
Training Feedforward Networks With the Marquardt Algorithm
,”
Neural Networks
0893-6080,
5
, pp.
989
993
.
20.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
, 1996,
Neural Network Design
,
PWS
, New York.
21.
Huang
,
H. X.
, and
Li
,
J. C.
, 2006, “
Fast Online Acquisition and Analysis for Parison Swell and Sag in Blow Molding
,”
J. Appl. Polym. Sci.
0021-8995,
101
, pp.
2399
2406
.
You do not currently have access to this content.