Adiabatic capillary tubes and short tube orifices are widely used as expansive devices in refrigeration, residential air conditioners, and heat pumps. In this paper, a generalized neural network has been developed to predict the mass flow rate through adiabatic capillary tubes and short tube orifices. The input/output parameters of the neural network are dimensionless and derived from the homogeneous equilibrium flow model. Three-layer backpropagation (BP) neural network is selected as a universal function approximator. Log sigmoid and pure linear transfer functions are used in the hidden layer and the output layer, respectively. The experimental data of R12, R22, R134a, R404A, R407C, R410A, and R600a from the open literature covering capillary and short tube geometries, subcooled and two-phase inlet conditions, are collected for the BP network training and testing. Compared with experimental data, the overall average and standard deviations of the proposed neural network are 0.75% and 8.27% of the measured mass flow rates, respectively.

1.
ASHRAE
, 2002,
ASHRAE Handbook: Refrigeration
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta
, Chap. 45.
2.
Li
,
R. Y.
,
Lin
,
S.
, and
Chen
,
Z. H.
, 1990, “
Numerical Modeling of Thermodynamic Non-Equilibrium Flow of Refrigerant Through Capillary Tubes
,”
ASHRAE Trans.
0001-2505,
96
(
1
), pp.
542
549
.
3.
Kuehl
,
S. J.
, and
Goldschmidt
,
V. W.
, 1991, “
Modeling of Steady Flows of R-22 Through Capillary Tubes
,”
ASHRAE Trans.
0001-2505,
97
(
1
), pp.
139
148
.
4.
Escanes
,
F.
,
Perez-Segarra
,
C. D.
, and
Oliva
,
A.
, 1995, “
Numerical Simulation of Capillary-Tube Expansion Devices
,”
Int. J. Refrig.
0140-7007,
18
(
2
), pp.
113
122
.
5.
Bittle
,
R. R.
, and
Pate
,
M. B.
, 1996, “
A Theoretical Model for Predicting Adiabatic Capillary Tube Performance With Alternative Refrigerants
,”
ASHRAE Trans.
0001-2505,
102
(
2
), pp.
52
64
.
6.
Garcia-Valladares
,
O.
,
Perez-Segarra
,
C. D.
, and
Oliva
,
A.
, 2002, “
Numerical Simulation of Capillary Tube Expansion Devices Behavior With Pure and Mixed Refrigerants Considering Metastable Region, Part I: Mathematical Formulation and Numerical Model
,”
Appl. Therm. Eng.
1359-4311,
22
(
2
), pp.
173
182
.
7.
Zhang
,
C. L.
, and
Ding
,
G. L.
, 2001, “
Modified General Equation for the Design of Capillary Tubes
,”
ASME J. Fluids Eng.
0098-2202,
123
(
4
), pp.
914
919
.
8.
Zhang
,
C. L.
, and
Ding
,
G. L.
, 2004, “
Approximate Analytic Solutions of Adiabatic Capillary Tube
,”
Int. J. Refrig.
0140-7007,
27
(
1
), pp.
17
24
.
9.
Wijaya
,
H.
, 1992, “
Adiabatic Capillary Tube Test Data for HFC-134a
,”
The IIR-Purdue Refrigeration Conference
,
West Lafayette, IN
, Vol.
1
, pp.
63
71
.
10.
Fiorelli
,
F. A. S.
,
Huerta
,
A. A. S.
, and
Silvares
,
O. M.
, 2002, “
Experimental Analysis of Refrigerant Mixtures Flow Through Adiabatic Capillary Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
499
512
.
11.
Fiorelli
,
F. A. S.
, and
Silvares
,
O. M.
, 2003, “
Refrigerant Mixtures Flow Through Capillary Tubes: A Comparison Between Homogeneous and Separated-Flow Models
,”
HVAC&R Res.
1078-9669,
9
(
1
), pp.
33
53
.
12.
Yana Motta
,
S. F.
,
Parise
,
J. A. R.
, and
Braga
,
S. L.
, 2002, “
A Visual Study of R-404A/oil Flow Through Adiabatic Capillary Tubes
,”
Int. J. Refrig.
0140-7007,
25
, pp.
586
596
.
13.
Fukuta
,
M.
,
Yanagisawa
,
T.
,
Arai
,
T.
, and
Ogi
,
Y.
, 2003, “
Influences of Miscible and Immiscible Oils on Flow Characteristics Through Capillary Tube, Part I: Experimental Study
,”
Int. J. Refrig.
0140-7007,
26
, pp.
823
829
.
14.
Garcia-Valladares
,
O.
, 2004, “
Review of Numerical Simulation of Capillary Tube Using Refrigerant Mixtures
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
949
966
.
15.
Bansal
,
P. K.
, and
Rupasinghe
,
A. S.
, 1996, “
An Empirical Model for Sizing Capillary Tubes
,”
Int. J. Refrig.
0140-7007,
19
(
8
), pp.
497
505
.
16.
Jung
,
D.
,
Park
,
C.
, and
Park
,
B.
, 1999, “
Capillary Tube Selection for HCFC22 Alternatives
,”
Int. J. Refrig.
0140-7007,
22
(
8
), pp.
604
614
.
17.
Chen
,
S. L.
,
Liu
,
C. H.
,
Cheng
,
C. S.
, and
Jwo
,
C. S.
, 2000, “
Simulation of Refrigerants Flowing Through Adiabatic Capillary Tubes
,”
HVAC&R Res.
1078-9669,
6
(
2
), pp.
101
115
.
18.
Trisaksri
,
V.
, and
Wongwises
,
S.
, 2003, “
Correlations for Sizing Adiabatic Capillary Tubes
,”
Int. J. Energy Res.
0363-907X,
27
, pp.
1145
1164
.
19.
Bittle
,
R. R.
,
Wolf
,
D. A.
, and
Pate
,
M. B.
, 1998, “
A Generalized Performance Prediction Method for Adiabatic Capillary Tubes
,”
HVAC&R Res.
1078-9669,
4
(
1
), pp.
27
43
.
20.
Melo
,
C.
,
Ferreira
,
R. T. S.
,
Neto
,
C. B.
,
Goncalves
,
J. M.
, and
Mezavila
,
M. M.
, 1999, “
An Experimental Analysis of Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
1359-4311,
19
(
6
), pp.
669
684
.
21.
Wei
,
C. Z.
,
Lin
,
Y. T.
,
Wang
,
C. C.
, and
Leu
,
J. S.
, 1999, “
Experimental Study of the Performance of Capillary Tubes for R-407C Refrigerant
,”
ASHRAE Trans.
0001-2505,
105
(
2
), pp.
634
638
.
22.
Kim
,
S. G.
,
Kim
,
M. S.
, and
Ro
,
S. T.
, 2002, “
Experimental Investigation of the Performance of R22, R407C and R410A in Several Capillary Tubes for Air-Conditioners
,”
Int. J. Refrig.
0140-7007,
25
, pp.
521
531
.
23.
Choi
,
J.
,
Kim
,
Y.
, and
Kim
,
H. Y.
, 2003, “
A Generalized Correlation for Refrigerant Mass Flow Rate Through Adiabatic Capillary Tubes
,”
Int. J. Refrig.
0140-7007,
26
(
7
), pp.
881
888
.
24.
Choi
,
J.
,
Kim
,
J. T.
, and
Chung
,
J. T.
, 2004, “
An Empirical Correlation and Rating Charts for the Performance of Adiabatic Capillary Tubes with Alternative Refrigerants
,”
Appl. Therm. Eng.
1359-4311,
24
(
1
), pp.
29
41
.
25.
Zhang
,
C. L.
, 2005, “
Generalized Correlation of Refrigerant Mass Flow Rate Through Adiabatic Capillary Tubes Using Artificial Neural Network
,”
Int. J. Refrig.
0140-7007,
28
, pp.
506
514
.
26.
Yang
,
L.
, and
Zhang
,
C. L.
, “
Two-Fluid Model of Refrigerant Two-Phase Flow Through Short Tube Orifices
,” 2005,
Int. J. Refrig.
0140-7007,
28
, pp.
419
427
.
27.
Aaron
,
D. A.
, and
Domanski
,
P. A.
, 1990, “
Experimentation Analysis and Correlation of Refrigerant-22 Flow Through Short Tube Restrictors
,”
ASHRAE Trans.
0001-2505,
96
(
1
), pp.
729
742
.
28.
Singh
,
G. M.
,
Hrnjak
,
P. S.
, and
Bullard
,
C. W.
, 2001, “
Flow of Refrigerant 134a Through Short Tubes
,”
HVAC&R Res.
1078-9669,
7
(
3
), pp.
245
262
.
29.
Kim
,
Y.
,
O’Neal
,
D. L.
, and
Yuan
,
X. L.
, 1994, “
Two-Phase Flow of HFC-134a and CFC-12 Through Short-Tube Orifices
,”
ASHRAE Trans.
0001-2505,
100
(
2
), pp.
582
591
.
30.
Kim
,
Y.
, and
O’Neal
,
D. L.
, 1994, “
Two-Phase Flow of R-22 Through Short-Tube Orifices
,”
ASHRAE Trans.
0001-2505,
100
(
1
), pp.
323
334
.
31.
Payne
,
W. V.
, and
O’Neal
,
D. L.
, 1999, “
Multiphase Flow of Refrigerant 410A Through Short Tube Orifices
,”
ASHRAE Trans.
0001-2505,
105
(
2
), pp.
66
74
.
32.
Payne
,
W. V.
, and
O’Neal
,
D. L.
, 1998, “
Mass flow characteristic of R407C through short tube orifices
,”
ASHRAE Trans.
0001-2505,
104
(
1
), pp.
197
209
.
33.
Choi
,
J.
,
Chung
,
J. T.
, and
Kim
,
Y.
, 2004, “
A Generalization Correlation for Two-Phase Flow of Alternative Refrigerants Through Short Tube Orifices
,”
Int. J. Refrig.
0140-7007,
27
, pp.
393
400
.
34.
Kim
,
Y.
,
Payne
,
V.
,
Choi
,
J.
, and
Domanski
,
P.
, 2005, “
Mass Flow Rate of R-410A Through Short Tubes Working Near the Critical Point
,”
Int. J. Refrig.
0140-7007,
28
, pp.
547
553
.
35.
Payne
,
V.
, and
O’Neal
,
D. L.
, 2004, “
A Mass Flow Rate Correlation for Refrigerants and Refrigerant Mixtures Flowing Through Short Tubes
,”
HVAC&R Res.
1078-9669,
10
(
1
), pp.
73
87
.
36.
Motta
,
S. Y.
,
Braga
,
S. L.
, and
Parise
,
J. A. R.
, 2000, “
Critical Flow of Refrigerants Through Adiabatic Capillary Tubes: Experimental Study of Zeotropic Mixtures R407C and R404A
,”
ASHRAE Trans.
0001-2505,
106
(
1
), pp.
534
549
.
37.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
, 1989, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
0893-6080,
2
, pp.
359
366
.
38.
Hagan
,
M. T.
, and
Demuth
,
H. B.
, 1996,
Neural Network Design
,
PWS Publishing Company
,
Boston, MA
.
39.
2000, REFPROP, Version 7.0, Reference Fluid Thermodynamic and Transport Properties NIST Standard Reference Database, 23, Gaithersburg, MD.
40.
Wang
,
W. J.
,
Zhao
,
L. X.
, and
Zhang
,
C. L.
, 2006, “
Generalized Neural Network Correlation for Flow Boiling Heat Transfer of R22 and Its Alternative Refrigerants Inside Horizontal Smooth Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
15–16
), pp.
2458
2465
.
41.
Le Niliot
,
C.
, and
Lefevre
,
F.
, 2004, “
A Parameter Estimation Approach to Solve the Inverse Problem of Point Heat Sources Identification
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
827
841
.
You do not currently have access to this content.