The effect of uniform surface blowing and suction on the wake dynamics and the drag and lift forces on a sphere is studied using a high-resolution direct numerical simulation technique. The sphere Reynolds number Re, based on its diameter and the freestream velocity, is in the range 1–300. The onset of recirculation in the sphere wake occurs at higher Re, and the transition to nonaxisymmetry and unsteadiness occurs at lower Re in the presence of blowing. The size of the recirculation region increases with blowing, but it nearly disappears in the case of suction. Wake oscillation also increases in the presence of blowing. The drag coefficient in the presence of blowing is reduced compared to that in uniform flow, in the range 10<Re<250, whereas it is increased in the presence of suction. The reduction in the wake pressure minimum associated with the enhanced vortical structures is the primary cause for drag reduction in the case of blowing. In the case of suction, it is the increased surface vorticity associated with the reduction of the boundary layer that results into increased drag. The fluctuations in the instantaneous lift and drag coefficients are significant for blowing, and they result from the asymmetric movement of the wake pressure minimum associated with the shedding process.

1.
Mougin
,
G.
, and
Magnaudet
,
J.
, 2002, “
Path Instability of a Rising Bubble
,”
Phys. Rev. Lett.
0031-9007,
88
, pp.
014502
.
2.
Magarvey
,
R. H.
, and
Bishop
,
R. L.
, 1961, “
Transition Ranges for Three-Dimensional Wakes
,”
Can. J. Phys.
0008-4204,
39
, pp.
1418
1422
.
3.
Achenbach
,
E.
, 1974, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
0022-1120,
62
, pp.
209
221
.
4.
Sakamoto
,
H.
, and
Haniu
,
H.
, 1990, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
386
392
.
5.
Natarajan
,
R.
, and
Acrivos
,
A.
, 1993, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
0022-1120,
254
, pp.
323
344
.
6.
Wu
,
J. S.
, and
Faeth
,
G. M.
, 1993, “
Sphere Wake in Still Surrounding at Intermediate Reynolds Numbers
,”
AIAA J.
0001-1452,
31
, pp.
1448
1455
.
7.
Johnson
,
T. A.
, and
Patel
,
V. C.
, 1999, “
Flow Past a Sphere up to a Reynolds Number of 300
,”
J. Fluid Mech.
0022-1120,
378
, pp.
19
70
.
8.
Mittal
,
R.
, 1999, “
A Fourier Chebyshev Spectral Collocation Method for Simulation Flow Past Spheres and Spheroids
,”
Int. J. Numer. Methods Fluids
0271-2091,
30
, pp.
921
937
.
9.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
, 2000, “
Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere
,”
J. Fluid Mech.
0022-1120,
416
, pp.
45
73
.
10.
Thompsom
,
M. C.
,
Leweke
,
T.
, and
Provansal
,
M.
, 2001, “
Kinematics and Dynamics of Sphere Wake Transition
,”
J. Fluids Struct.
0889-9746,
15
, pp.
575
585
.
11.
Schouveiler
,
L.
, and
Provansal
,
M.
, 2002, “
Self-Sustained Oscillations in the Wake of a Sphere
,”
Phys. Fluids
1070-6631,
14
, pp.
3846
3854
.
12.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic
,
New York
.
13.
Schiller
,
L.
, and
Neumann
,
A.
, 1933, “
Uber die Grundlegenden Berechungen bei der Schwer Kraftaufbereitung
,”
Verein Deutscher Ingenieure
,
77
, pp.
318
324
.
14.
Maxey
,
M. R.
, and
Riley
,
J. J.
, 1983, “
Equation of Motion for a Small Sphere in a Nonuniform Flow
,”
Phys. Fluids
0031-9171,
26
, pp.
883
889
.
15.
McLaughlin
,
J. B.
, 1993, “
The Lift on a Small Sphere in Wall-Bounded Linear Shear Flows
,”
J. Fluid Mech.
0022-1120,
246
, pp.
249
265
.
16.
Dandy
,
D. S.
, and
Dwyer
,
H. A.
, 1990, “
A Sphere in Shear Flow at Finite Reynolds Number: Effect of Shear on Particle Lift, Drag and Heat Transfer
,”
J. Fluid Mech.
0022-1120,
216
, pp.
381
410
.
17.
Magnaudet
,
J.
,
Rivero
,
M.
, and
Fabre
,
J.
, 1995, “
Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. Part 1. Steady Straining Flow
,”
J. Fluid Mech.
0022-1120,
284
, pp.
97
135
.
18.
Kurose
,
R.
, and
Komori
,
S.
, 1999, “
Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,”
J. Fluid Mech.
0022-1120,
384
, pp.
183
206
.
19.
Mittal
,
R.
, 2000, “
Response of the Sphere Wake to Freestream Fluctuations
,”
Theor. Comput. Fluid Dyn.
0935-4964,
13
, pp.
397
413
.
20.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2002, “
Steady Planar Straining Flow Past a Rigid Sphere at Moderate Reynolds Number
,”
J. Fluid Mech.
0022-1120,
466
, pp.
365
407
.
21.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2002, “
Effect of Free Rotation on the Motion of a Solid Sphere in Linear Shear Flow at Moderate Re
,”
Phys. Fluids
1070-6631,
14
, pp.
2719
2737
.
22.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2002, “
Shear Versus Vortex-Induced Lift Force on a Rigid Sphere at Moderate Re
,”
J. Fluid Mech.
0022-1120,
473
, pp.
379
388
.
23.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2003, “
Inertial and Viscous Forces on a Rigid Sphere in Straining Flows at Moderate Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
481
, pp.
105
148
.
24.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2003, “
Effect of Turbulence on the Drag and Lift of a Particle
,”
Phys. Fluids
1070-6631,
15
, pp.
3496
3513
.
25.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2004, “
Wake Response of an Isolated Particle Subjected to Isotropic Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
518
, pp.
95
123
.
26.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W. A.
, 1995, “
Unsteady Flow Interactions Between an Advected Cylindrical Vortex Tube and a Spherical Particle
,”
J. Fluid Mech.
0022-1120,
288
, pp.
123
155
.
27.
Kim
,
I.
,
Elghobashi
,
S.
, and
Sirignano
,
W. A.
, 1998, “
On the Equation for Spherical-Particle Motion: Effect of Reynolds and Acceleration Numbers
,”
J. Fluid Mech.
0022-1120,
367
, pp.
221
254
.
28.
Legendre
,
D.
,
Merle
,
A.
, and
Magnaudet
,
J.
, 2006, “
Wake of a Spherical Bubble or a Solid Sphere Set Fixed in a Turbulent Environment
,”
Phys. Fluids
1070-6631,
18
, pp.
048102
048106
.
29.
Niazmand
,
H.
, and
Renksizbulut
,
M.
, 2003, “
Transient Three-Dimensional Heat Transfer From Rotating Spheres With Surface Blowing
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
3535
3554
.
30.
Niazmand
,
H.
, and
Renksizbulut
,
M.
, 2003, “
Surface Effects on Transient Three-Dimensional Flows Around Rotating Spheres at Moderate Reynolds Numbers
,”
Comput. Fluids
0045-7930,
32
, pp.
1405
1433
.
31.
Niazmand
,
H.
, and
Renksizbulut
,
M.
, 2005, “
Flow Past a Spinning Sphere With Surface Blowing and Heat Transfer
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
163
171
.
32.
Kim
,
D.
, and
Choi
,
H.
, 2002, “
Laminar Flow Past a Sphere Rotating in the Streamwise Direction
,”
J. Fluid Mech.
0022-1120,
461
, pp.
365
386
.
33.
Bagchi
,
P.
2002, “
Particle Dynamics in Inhomogeneous Flows at Moderate to High Reynolds Numbers
,” Ph.D. thesis, University of Illinois, Urbana-Champaign.
34.
Mittal
,
R.
, and
Balachandar
,
S.
, 1996, “
Direct Numerical Simulation of Flow Past Elliptic Cylinders
,”
J. Comput. Phys.
0021-9991,
124
, pp.
351
367
.
35.
Delaunay
,
Y.
, and
Kaiktsis
,
L.
, 2001, “
Control of Circular Cylinder Wakes Using Base Mass Transpiration
,”
Phys. Fluids
1070-6631,
13
, pp.
3285
3298
.
36.
Gogos
,
G.
,
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
, and
Sundararajan
,
T.
, 1986, “
Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density
,”
J. Fluid Mech.
0022-1120,
171
, pp.
121
144
.
37.
Jog
,
M. A.
,
Ayyaswamy
,
P. S.
, and
Cohen
,
I. M.
1996, “
Evaporation and Combustion of a Slowly Moving Liquid Fuel Droplet: Higher-Order Theory
,”
J. Fluid Mech.
0022-1120,
307
, pp.
135
165
.
38.
Williams
,
F. A.
, 1985,
Combustion Theory
, 2nd ed.,
Addison-Wesley
,
New York
.
39.
Huerre
,
P.
, and
Monkewitz
,
P.
, 1990, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
22
, pp.
473
537
.
40.
Leu
,
T.-S.
, and
Ho
,
C.-H.
, 2000, “
Contral of Global Instability in a Non-Parallel Near Wake
,”
J. Fluid Mech.
0022-1120,
404
, pp.
345
378
.
41.
Hetsroni
,
G.
, 1989, “
Particle-Turbulence Interaction
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
735
747
.
42.
Gore
,
R. A.
, and
Crowe
,
C. T.
, 1989, “
The Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
279
296
.
43.
Dukowicz
,
J. K.
, 1982, “
An Exact Solution for the Drag of a Sphere in Low Reynolds Number Flow With Strong Uniform Suction or Blowing
,”
Phys. Fluids
0031-9171,
25
, pp.
1117
1118
.
44.
Li
,
Z.
,
Navon
,
I.
,
Hussaini
,
M. Y.
, and
Le Dimet
,
F. X.
, 2003, “
Optimal Control of Cylinder Wakes via Suction and Blowing
,”
Comput. Fluids
0045-7930,
32
, pp.
149
171
.
45.
Min
,
C.
, and
Choi
,
H.
, 1999, “
Suboptimal Feedback Control of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
401
, pp.
123
156
.
46.
Ling
,
G. P.
, and
Fang
,
J. W.
, 2002, “
Numerical Study on the Flow Around a Circular Cylinder With Surface Suction or Blowing Using Vorticity-Velocity Method
,”
Appl. Math. Mech.
0253-4827,
23
, pp.
1089
1096
.
47.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of 3-Dimensionality on the Lift and Drag of Nominally 2-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
, pp.
1841
1865
.
You do not currently have access to this content.