The inception of leading-edge sheet cavitation on two-dimensional smooth thin hydrofoils at low to moderately high Reynolds number flows is investigated by an asymptotic approach and numerical simulations. The asymptotic theory is based on the work of Rusak (1994, “Subsonic Flow Around Leading Edge of a Thin Aerofoil With a Parabolic Nose,” Eur. J. Appl. Mech., 5, pp. 283–311) and demonstrates that the flow about a thin hydrofoil can be described in terms of an outer region, around most of the hydrofoil chord, and an inner region, around the nose, which asymptotically match each other. The flow in the outer region is dominated by the classical thin hydrofoil theory. Scaled (magnified) coordinates and a modified (smaller) Reynolds number (ReM) are used to correctly account for the nonlinear behavior and extreme velocity changes in the inner region, where both the near-stagnation and high suction areas occur. It results in a model (simplified) problem of a uniform flow past a semi-infinite smooth parabola with a far-field circulation governed by a parameter à that is related to the hydrofoil’s angle of attack, nose radius of curvature, and camber. The model parabola problem consists of a viscous flow that is solved numerically for various values of à and ReM to determine the minimum pressure coefficient and the cavitation number for the inception of leading-edge cavitation as function of the hydrofoil’s geometry, flow Reynolds number, and fluid thermodynamic properties. The predictions according to this approach show good agreement with results from available experimental data. This simplified approach provides a universal criterion to determine the onset of leading-edge (sheet) cavitation on hydrofoils with a parabolic nose in terms of the similarity parameters à and ReM and the effect of hydrofoil’s thickness ratio, nose radius of curvature, camber, and flow Reynolds number on the onset.

1.
Arakeri
,
V. H.
, and
Acosta
,
A. J.
, 1973, “
Viscous Effects in the Inception of Cavitation on Axisymmetric Bodies
,”
ASME J. Fluids Eng.
0098-2202,
95
(
4
), pp.
519
527
.
2.
Arakeri
,
V. H.
, 1975, “
Viscous Effects on the Position of Cavitation Separation from Smooth Bodies
,”
J. Fluid Mech.
0022-1120,
68
, pp.
779
799
.
3.
Arakeri
,
V. H.
,
Carroll
,
J. A.
, and
Holl
,
J. W.
, 1981, “
A Note on the Effect of Short and Long Laminar Separation Bubbles on Desinent Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
103
(
1
), pp.
28
32
.
4.
Van der Meulen
,
J. H. J.
, 1978, “
A Holographic Study of the Influence of Boundary Layer and Surface Characteristics on Inception and Developed Cavitation on Axisymmetric Bodies
,”
Proceedings of 12th Symposium on Naval Hydrodynamics
, Washington, DC, pp.
443
451
.
5.
Van der Meulen
,
J. H. J.
, 1980, “
Boundary Layer and Cavitation Studies of NACA 16–012 and NACA 4412 Hydrofoils
,”
Proceedings of 13th Symposium on Naval Hydrodynamics
, Tokyo, Japan, pp.
195
219
.
6.
Billet
,
M. L.
, and
Holl
,
J. W.
, 1981, “
Scale Effects on Various Types of Limited Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
103
(
3
), pp.
405
414
.
7.
Franc
,
J. P.
, and
Michel
,
J. M.
, 1985, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
0022-1120,
154
, pp.
63
90
.
8.
Kjeldsen
,
M.
,
Arndt
,
R. E. A.
, and
Effertz
M.
, 2000, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
122
(
3
), pp.
481
487
.
9.
Shen
,
Y. T.
, and
Dimotakis
,
P. E.
, 1989, “
Viscous and Nuclei Effects on Hydrodynamic Loadings and Cavitation of a NACA 66 (MOD) Foil Section
,”
ASME J. Fluids Eng.
0098-2202,
111
, pp.
306
316
.
10.
Kinnas
,
S. A.
, and
Mazel
,
C. H.
, 1993, “
Numerical Versus Experimental Cavitation Tunnel (A Supercavitating Hydrofoil Experiment)
,”
ASME J. Fluids Eng.
0098-2202,
115
(
4
), pp.
760
765
.
11.
Yamaguchi
,
H.
, and
Kato
,
H.
, 1983, “
On Application of Nonlinear Cavity Flow Theory to Thick Foil Sections
,”
Second International Conference on Cavitation
, Edinburgh, Scotland, pp.
167
174
.
12.
Lemonnier
,
H.
, and
Rowe
,
A.
, 1988, “
Another Approach in Modeling Cavitating Flows
,”
J. Fluid Mech.
0022-1120,
195
, pp.
557
580
.
13.
Pellone
,
C.
, and
Rowe
,
A.
, 1988, “
Effect of Separation on Partial Cavitation
,”
J. Fluid Mech.
0022-1120,
110
(
2
), pp.
182
189
.
14.
Berntsen
,
G. S.
,
Kjeldsen
,
M.
, and
Arndt
,
R. E. A.
, 2001, “
Numerical Modeling of Sheet and Tip Vortex Cavitation With Fluent 5
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
.
15.
Wu
,
T. Y. T.
, 1972, “
Cavity and Wake Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
4
, pp.
243
284
.
16.
Furuya
,
O.
, 1980, “
Non-Linear Theory for Partially Cavitating Cascade Flows
,”
Tenth International Symposium Hydraulic Machinery and Equipment Associated With Energy Systems in the New Decade of the 1980s
, Tokyo, Japan, pp.
221
241
.
17.
Holl
,
J. W.
, 1969, “
Limited Cavitation
,”
Symposium on Cavitation State of Knowledge
,
Evanston, IL
, pp.
26
63
.
18.
Arndt
,
R. E. A.
, 1995, “
Vortex Cavitation
,”
Fluid Vortices
,
S.
Green
, ed., Kluwer, Dordrecht, Chap. 17.
19.
Arndt
,
R. E. A.
, 1981, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
0066-4189,
13
, pp.
273
328
.
20.
Arndt
,
R. E. A.
,
Holl
,
J. W.
,
Bohn
,
J. C.
, and
Bechtel
,
W. T.
, 1979, “
Influence of Surface Irregularities on Cavitation Performance
,”
J. Ship Res.
0022-4502,
23
(
3
), pp.
157
170
.
21.
Holl
,
J. W.
, and
Wislicenus
,
G. F.
, 1961, “
Scale Effects on Cavitation
,”
ASME J. Basic Eng.
0021-9223,
83
, pp.
385
398
.
22.
Holl
,
J. W.
, 1970, “
Nuclei and Cavitation
,”
ASME J. Basic Eng.
0021-9223,
92
, pp.
681
688
.
23.
Meyer
,
R. S.
,
Billet
,
M. L.
, and
Holl
,
J. W.
, 1992, “
Freestream Nuclei and Traveling-Bubble Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
114
(
4
), pp.
672
679
.
24.
Liu
,
Z.
, and
Brennen
,
C. E.
, 1998, “
Cavitation Nuclei Population and Event Rates
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
728
737
.
25.
Gowing
,
S.
, and
Shen
,
Y.
, 2001, “
Nuclei Effects on Tip Vortex Cavitation Scaling
,”
Fourth International Symposlum on Cavitation
, Pasadena, CA.
26.
McCormick
,
B. W.
, 1962, “
On Cavitation Produced by a Vortex Trailing From a Lifting Surface
,”
ASME J. Basic Eng.
0021-9223,
84
, pp.
369
379
.
27.
Arndt
,
R. E. A.
,
Arakeri
,
V. H.
, and
Higuchi
,
H.
, 1991, “
Some Observations of Tip-Vortex Cavitation
,”
J. Fluid Mech.
0022-1120,
229
, pp.
269
289
.
28.
Huang
,
T. T.
, and
Peterson
,
F. B.
, 1976, “
Influence of Viscous Effects on Model/Full-Scale Cavitation Scaling
,”
J. Ship Res.
0022-4502,
20
(
4
), pp.
215
223
.
29.
Arakeri
,
V. H.
, 1976, “
A Note on the Transition Observation on an Axisymmetric Body and Some Related Fluctuating Wall Pressure Measuerments
,”
ASME J. Fluids Eng.
0098-2202,
97
, pp.
82
86
.
30.
Robertson
,
J. M.
,
McGinley
,
J. H.
, and
Holl
,
J. W.
, 1957, “
On Several Laws of Cavitation Scaling
,” La
Houille Blanche
0018-6368,
4
, pp.
540
547
.
31.
Guennoun
,
F. M.
, 2006, “
Physical Study of a Leading Edge Cavity Dettachment
,” Ph.D. thesis, Ecole Polytechnic Federale de Lausanne, Switzerland.
32.
Rusak
,
Z.
, 1994, “
Subsonic Flow Around the Leading Edge of a Thin Aerofoil With a Parabolic Nose
,”
Eur. J. Appl. Math.
0956-7925,
5
, pp.
283
311
.
33.
Darrozés
,
J. S.
, 1977, “
Comportement Singulier des écoulements à Grand Nombre de Reynolds au Voisinage du Bord d’attaque d’Une Aile Mince
,”
Singular Perturbations and Boundary Layer Theory
,
Lecture Notes in Mathematics No. 594
,
Springer-Verlag
,
New York
, pp.
77
107
.
34.
Tani
,
I.
, 1964 “
Low Speed Flows Involving Bubble Separations
,”
Prog. Aeronaut. Sci.
0079-6026,
5
, pp.
70
103
.
35.
Keller
,
A. P.
, 1984, “
Scale Effects at Beginning Cavitation Applied to Submerged Bodies
,”
International Symposyum on Cavitation Inception, FED-16, The Winter Annual Meeting of the ASME
, New Orleans, LA, pp.
43
47
.
36.
Holl
,
J. W.
, 1960, “
An Effect of Air Content on the Occurrence of Cavitation
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
941
946
.
37.
Kim
,
J.-M.
,
Rusak
,
Z.
, and
Koratkar
,
N.
, 2003, “
Small-Scale Airfoil Aerodynamic Efficiency Improvement by Surface Temperature and Heat Transfer
,”
AIAA J.
0001-1452,
11
, pp.
2105
2113
.
38.
Morris
,
W. J.
, II
, 2005, “
On the Prediction of Stall Onset for Airfoils at Moderately High Reynolds Number Flows
,” M.S. thesis, Rensselaer Polytechnic Institute, Troy.
You do not currently have access to this content.