The paper presents implicit large-eddy simulation (ILES) simulation of a shock tube experiment involving compressible turbulent mixing. A new characteristic-based approximate Riemann solver is derived, and employed in a second-order and fifth-order finite volume Godunov-type ILES framework. The methods are validated against (qualitative) experimental data and then compared and contrasted in terms of resolved turbulent kinetic energy and mixing parameters as a function of grid resolution. It is concluded that both schemes represent the experiment with good accuracy. However, the fifth-order results are approximately equivalent to results gained on double the grid size at second order, whereas the fifth-order method requires only approximately 20% extra computational time.

1.
Holder
,
D.
, and
Barton
,
C.
, 2004, “
Shock Tube Richtmyer–Meshkov Experiments: Inverse Chevron and Half Height
,”
Proceedings of the Ninth IWPCTM
.
2.
Meshkov
,
E.
, 1969, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
0015-4628,
43
(
5
), pp.
101
104
.
3.
Richtmyer
,
R.
, 1960, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
0010-3640,
13
, pp.
297
319
.
4.
Sagaut
,
P.
, 2001,
Large Eddy Simulation for Incompressible Flows
,
Springer
,
New York
.
5.
Lesieur
,
M.
, and
Metais
,
O.
, 1996, “
New Trends in Large-Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
45
82
.
6.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
7.
Drikakis
,
D.
, 2003, “
Advances in Turbulent Flow Computations Using High-Resolution Methods
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
405
424
.
8.
Youngs
,
D.
, 1994, “
Numerical Simulation of Mixing by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Part. Beams
0263-0346,
12
, pp.
725
750
.
9.
Youngs
,
D.
, 1991, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
1312
1320
.
10.
Thornber
,
B.
,
Drikakis
,
D.
, and
Youngs
,
D.
, 2007, “
Large-Eddy Simulation of Multi-Component Compressible Turbulent Flows Using High Resolution Methods
,”
Comput. Fluids
0045-7930, doi: 10.1016/j.compfluid.2007.04.009
11.
Grinstein
,
F.
, and
Fureby
,
C.
, 2002, “
Recent Progress on Miles for High Reynolds Number Flows
,”
ASME Trans. J. Fluids Eng.
0098-2202,
848
, pp.
848
861
.
12.
Hahn
,
M.
, and
Drikakis
,
D.
, 2005, “
Large Eddy Simulation of Compressible Turbulence Using High-Resolution Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
49
, pp.
971
977
.
13.
Margolin
,
L.
,
Smolarkiewicz
,
P.
, and
Sorbjan
,
Z.
, 1999, “
Large-Eddy Simulations of Convective Boundary Layers Using Nonoscillatory Differencing
,”
Physica D
0167-2789,
133
, pp.
390
397
.
14.
Porter
,
D.
,
Woodward
,
P.
, and
Pouquet
,
A.
, 1998, “
Inertial Range Structures in Decaying Compressible Turbulent Flows
,”
Phys. Fluids
1070-6631,
10
(
1
), pp.
237
245
.
15.
Fureby
,
C.
, and
Grinstein
,
F.
, 2002, “
Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows
,”
J. Comput. Phys.
0021-9991,
181
, pp.
68
97
.
16.
Margolin
,
L.
,
Rider
,
W.
, and
Grinstein
,
F.
, 2006, “
Modeling Turbulent Flow With Implicit Les
,”
J. Turbul.
1468-5248,
7
(
15
), pp.
1
27
.
17.
Wang
,
S.
,
Anderson
,
M.
,
Oakley
,
J.
,
Corradini
,
R.
, and
Bonazza
,
M. L.
, 2004, “
A Thermodynamically Consistent and Fully Conservative Treatment of Contact Discontinuities for Compressible Multi-Component Flows
,”
J. Comput. Phys.
0021-9991,
195
, pp.
528
559
.
18.
Godunov
,
S.
, 1959, “
A Finite-Difference Method for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics
,”
Mat. Sb.
0368-8666,
47
, pp.
271
295
.
19.
Spiteri
,
R.
, and
Ruuth
,
S.
, 2002, “
A Class of Optimal High-Order Strong-Stability Preserving Time Discretization Methods
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
40
(
2
), pp.
469
491
.
20.
Drikakis
,
D.
, and
Rider
,
W.
, 2004,
High-Resolution Methods for Incompressible and Low-Speed Flows
,
Springer
,
New York
.
21.
Eberle
,
A.
, 1987, “
Characteristic Flux Averaging Approach to the Solution of Euler’s Equations
,” Tech. rep.,
VKI Lecture Series
.
22.
Drikakis
,
D.
, and
Tsangaris
,
S.
, 1991, “
An Implicit Characteristic-Flux-Averaging Method for the Euler Equations for Real Gases
,”
Int. J. Numer. Methods Fluids
0271-2091,
12
, pp.
711
726
.
23.
Courant
,
R.
, and
Hilbert
,
D.
, 1968,
Methoden der mathematischen Physik
,
Springer
,
New York
.
24.
van Leer
,
B.
, 1977, “
Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to Numerical Convection
,”
J. Comput. Phys.
0021-9991,
23
, pp.
276
299
.
25.
Kim
,
K.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
0021-9991,
208
, pp.
570
615
.
26.
Toro
,
E.
, 1997,
Riemann Solvers and Numerical Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
27.
Thornber
,
B.
,
Mosedale
,
A.
, and
Drikakis
,
D.
, 2007, “
On the Implicit Large Eddy Simulation of Homogeneous Decaying Turbulence
,”
J. Comput. Phys.
0021-9991,
226
, pp.
1902
1929
.
28.
Bates
,
K.
,
Nikiforakis
,
N.
, and
Holder
,
D.
, 2007, “
Richtmyer–Meshkov Instability Induced by the Interaction of a Shock Wave With a Block of SF6
,”
Phys. Fluids
1070-6631,
19
, p.
036101
.
29.
Shi
,
J.
,
Zhang
,
Y.-T.
, and
Shu
,
C.-W.
, 2003, “
Resolution of High Order Weno Schemes for Complicated Flow Structures
,”
J. Comput. Phys.
0021-9991,
186
, pp.
690
696
.
30.
Latini
,
M.
,
Schilling
,
O.
, and
Don
,
W.
, 2007, “
Effects of Weno Flux Reconstruction Order and Spatial Resolutoin on Reshocked Two-Dimensional Richtmyer-Meshkov Instability
,”
J. Comput. Phys.
0021-9991,
221
, pp.
805
836
.
You do not currently have access to this content.