This paper looks at the use of high-resolution and very high-order methods for implicit large-eddy simulation (ILES), with the specific example of simulating the multicomponent two-dimensional single-mode Richtmyer–Meshkov instability for which experimental data is available. The two gases are air and SF6, making stringent demands on the models used in the code. The interface between the two gases is initialized with a simple sinusoidal perturbation over a wavelength of 59mm, and a shock of strength Mach 1.3 is passed through this interface. The main comparison is between the second-order monotone upwind-centered scheme for conservation law methods of van Leer (1979, “Towards the Ultimate Conservative Difference Scheme,” J. Comput. Phys. 32, pp. 101–136) and the current state-of-the-art weighted essentially nonoscillatory interpolation, which is presented to ninth order, concentrating on the effect on resolution of the instability on coarse grids. The higher-order methods as expected provide better resolved and more physical features than the second-order methods on the same grid resolution. While it is not possible to make a definitive statement, the simulations have indicated that the extra time required for the higher-order reconstruction is less than the time saved by being able to obtain the same or better accuracy at lower computational cost (fewer grid points). It should also be noted that all simulations give a good representation of the growth rate of the instability, comparing very favorably to the experimental results, and as such far better than the currently existing theoretical models. This serves to further indicate that the ILES approach is capable of providing accurately physical information despite the lack of any formal subgrid model.

1.
Jacobs
,
J. W.
, and
Krivets
,
V. V.
, 2005, “
Experiments on the Late-Time Development of Single-Mode Richtmyer–Meshkov Instability
,”
Phys. Fluids
1070-6631,
17
, p.
034105
.
2.
Harten
,
A.
, 1997, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
0021-9991,
49
, pp.
357
393
.
3.
Sagaut
,
P.
,
Large-Eddy Simulation for Incompressible Flows—An Introduction
,
Springer-Verlag
,
Berlin
.
4.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
.
5.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, editors.
Implicit Large Eddy Simulation
,
CUP
, 2006.
6.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
, 1987, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III
,”
J. Comput. Phys.
0021-9991,
71
(
2
), pp.
231
303
.
7.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
, 1992, “
New Insights into Large Eddy Simulation
,”
Fluid Dyn. Res.
0169-5983,
10
, pp.
199
228
.
8.
Drikakis
,
D.
, and
Rider
,
W.
,
High-Resolution Methods for Incompressible and Low-Speed Flows
,
Springer
,
New York
.
9.
Fureby
,
C.
, and
Grinstein
,
F. F.
, 2002, “
Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows
,”
J. Comput. Phys.
0021-9991,
181
, pp.
68
97
.
10.
Margolin
,
L. G.
,
Rider
,
W. J.
, and
Grinstein
,
F. F.
, 2006, “
Modeling Turbulent Flow With Implicit Les
,”
J. Turbul.
1468-5248,
7
(
15
), pp.
1
27
.
11.
Youngs
,
D. L.
, 2003, “
Application of Miles to Rayleigh–Taylor and Richtmyer–Meshkov Mixing
,” AIAA Paper No. 2003-4102.
12.
Youngs
,
D. L.
, 1991, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
1312
1320
.
13.
Thornber
,
B.
, and
Drikakis
,
D.
, 2006, “
ILES of Shock Waves and Turbulent Mixing Using High Resolution Riemann Solvers and TVD Methods
,”
ECCOMAS 2006, Minisymposia on Large Eddy Simulation: Theory and Applications
.
14.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2002, “
Recent Progress on Miles for High Reynolds Number Flows
,”
ASME Trans. J. Fluids Eng.
0098-2202,
848
, pp.
848
861
.
15.
Drikakis
,
D.
, 2003, “
Advances in Turbulent Flow Computations Using High-Resolution Methods
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
405
424
.
16.
Hahn
,
M.
, and
Drikakis
,
D.
, 2005, “
Large Eddy Simulation of Compressible Turbulence Using High-Resolution Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
49
, pp.
971
977
.
17.
Margolin
,
L. G.
,
Smolarkiewicz
,
P. K.
, and
Sorbjan
,
Z.
, 1999, “
Large-Eddy Simulations of Convective Boundary Layers Using Nonoscillatory Differencing
,”
Physica D
0167-2789,
133
, pp.
390
397
.
18.
Smolarkiewicz
,
P. K.
, and
Margolin
,
L. G.
, 1998, “
Mpdata: A Finite Difference Solver for Geophysical Flows
,”
J. Comput. Phys.
0021-9991,
140
(
2
), pp.
459
480
.
19.
Gordnier
,
R. E.
, and
Visbal
,
M. R.
, 2005, “
Compact Different Scheme Applied to Simulation of Low-Sweep Delta Wing Flow
,”
AIAA J.
0001-1452,
43
(
8
), pp.
1744
1752
.
20.
Drikakis
,
D.
,
Fureby
,
C.
,
Grinstein
,
F.
,
Hahn
,
M.
, and
Youngs
,
D.
, 2006, “
Miles of Transition to Turbulence in the Taylor–Green Vortex System
,”
ERCOFTAC Workshop on Direct and Large Eddy Simulation-6
, p.
133
.
21.
Fureby
,
C.
,
Tabor
,
F.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
, 1997, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
1070-6631,
9
(
5
), pp.
1416
1429
.
22.
Porter
,
D. H.
,
Woodward
,
P. R.
, and
Pouquet
,
A.
, 1998, “
Inertial Range Structures in Decaying Compressible Turbulent Flows
,”
Phys. Fluids
1070-6631,
10
(
1
), pp.
237
245
.
23.
Margolin
,
L. G.
,
Smolarkiewicz
,
P. K.
, and
Wyszogrodzki
,
A. A.
, 2002, “
Implicit Turbulence Modelling for High Reynolds Number Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
862
867
.
24.
Toro
,
E. F.
, 1999,
Riemann Solvers and Numerical Methods for Fluid Dynamics
,
2nd ed.
,
Springer
,
New York
.
25.
Wang
,
S. P.
,
Anderson
,
M. H.
,
Oakley
,
J. G.
,
Corradini
,
M. L.
, and
Bonazza
,
R.
, 2004, “
A Thermodynamically Consistent and Fully Conservative Treatment of Contact Discontinuities for Compressible Multi-Component Flows
,”
J. Comput. Phys.
0021-9991,
195
, pp.
528
559
.
26.
Courant
,
R.
,
Isaacson
,
E.
, and
Rees
,
M.
, 1952, “
On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences
,”
Commun. Pure Appl. Math.
0010-3640,
5
, pp.
243
255
.
27.
van Leer
,
B.
, 1979, “
Towards the Ultimate Conservative Difference Scheme. V
,”
J. Comput. Phys.
0021-9991,
32
, pp.
101
136
.
28.
Sweby
,
P. K.
, 1984, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
21
(
5
), pp.
995
1011
.
29.
Piperno
,
S.
, and
Depeyre
,
S.
, 1998, “
Criteria for the Design of Limiters Yielding Efficient High Resolution TVD Schemes
,”
Comput. Fluids
0045-7930,
27
(
2
), pp.
183
197
.
30.
Kadalbajoo
,
M. K.
, and
Kumar
,
R.
, 2006, “
A High Resolution Total Variation Diminishing Scheme for Hyperbolic Conservation Law and Related Problems
,”
Appl. Math. Comput.
0096-3003,
175
(
2
), pp.
1556
1573
.
31.
Mahmood
,
K.
,
Basri
,
S.
,
Mokhtar
,
A. S.
,
Ahmad
,
M. M. H. M.
,
Asrar
,
W.
, and
Omar
,
A. A.
, 2005, “
Flux Limiting With High-Order Compact Schemes
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
.
32.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
, 1987, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III
,”
J. Comput. Phys.
0021-9991,
71
(
2
), pp.
231
303
.
33.
Jiang
,
G.-S.
, and
Shu
,
C.-H.
, 1996, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
0021-9991,
126
, pp.
202
228
.
34.
Titarev
,
V. A.
, and
Toro
,
E. F.
, 2004, “
Finite-Volume WENO Schemes for Three-Dimensional Conservation Laws
,”
J. Comput. Phys.
0021-9991,
201
, pp.
238
260
.
35.
Balsara
,
D. S.
, and
Shu
,
C.-H.
, 2000, “
Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy
,”
J. Comput. Phys.
0021-9991,
160
, pp.
405
452
.
36.
Suresh
,
A.
, and
Huynh
,
H. T.
, 1997, “
Accurate Monotonicity-Preserving Schemes With Runge–Kutta Time Stepping
,”
J. Comput. Phys.
0021-9991,
136
, pp.
83
99
.
37.
Xu
,
Z.
, and
Shu
,
C.-H.
, 2005, “
Anti-Diffusive Flux Corrections for High-Order Finite Difference WENO Schemes
,”
J. Comput. Phys.
0021-9991,
205
, pp.
458
485
.
38.
Liska
,
R.
, and
Wendroff
,
B.
, 2002, “
Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations
,” available at http://www-troja.fjfi.cvut.cz/liska/CompareEuler/compare8/http://www-troja.fjfi.cvut.cz/liska/CompareEuler/compare8/
39.
Shu
,
C.-W.
, 2003, “
High-Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
17
(
2
), pp.
107
118
.
40.
Pirozzoli
,
S.
, 2002, “
Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction
,”
J. Comput. Phys.
0021-9991,
178
, pp.
81
117
.
41.
Kim
,
K. H.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for MultiDimensional Compressible Flows. Part I: Spatial Discretization
,”
J. Comput. Phys.
0021-9991,
208
, pp.
527
569
.
42.
Kim
,
K. H.
, and
Kim
,
C.
, 2005, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
0021-9991,
208
, pp.
570
615
.
43.
Deng
,
X.
, and
Zhang
,
H.
, 2000, “
Developing High-Order Weighted Compact Non-Linear Schemes
,”
J. Comput. Phys.
0021-9991,
165
, pp.
22
44
.
You do not currently have access to this content.