Simulations of gas-solid fluidized beds have been performed using a hybrid simulation method, which couples the discrete element method (DEM) for particle dynamics with the averaged two-fluid (TF) continuum equations for the gas phase. The coupling between the two phases is modeled using an interphase momentum transfer term. The results of the hybrid TF-DEM simulations are compared to experimental data and TF model simulations. It is found that the TF-DEM simulation is capable of predicting general fluidized bed dynamics, i.e., pressure drop across the bed and bed expansion, which are in agreement with experimental measurements and TF model predictions. Multiparticle contacts and large contact forces distribute in the regions away from bubbles, as demonstrated from the TF-DEM simulation results. The TF-DEM model demonstrates the capability to capture more heterogeneous structural information of the fluidized beds than the TF model alone. The implications to the solid phase constitutive closures for TF models are discussed. However, the TF-DEM simulations depend on the form of the interphase momentum transfer model, which can be computed in terms of averaged or instantaneous particle quantities. Various forms of the interphase momentum transfer model are examined, and simulation results from these models are compared.

1.
Curtis
,
J. S.
, and
van Wachem
,
B.
, 2004, “
Modeling Particle-Laden Flows: A Research Outlook
,”
AIChE J.
0001-1541,
50
(
11
), pp.
2638
2645
.
2.
Jackson
,
R.
, 2000,
The Dynamics of Fluidized Particles
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
3.
Gidaspow
,
D.
,
Jung
,
J.
, and
Singh
,
R. K.
, 2004, “
Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm 2002 Flour-Daniel Lecture
,”
Powder Technol.
0032-5910,
148
, pp.
123
141
.
4.
Agrawal
,
K.
,
Loezos
,
P. N.
,
Syamlal
,
M.
, and
Sundaresan
,
S.
, 2001, “
The Role of Meso-Scale Structures in Rapid Gas-Solid Flows
,”
J. Fluid Mech.
0022-1120,
445
, pp.
151
185
.
5.
Rahman
,
K.
, and
Campbell
,
C. S.
, 2002, “
Particle Pressures Generated Around Bubbles in Gas-Fluidized Beds
,”
J. Fluid Mech.
0022-1120,
455
, pp.
102
127
.
6.
Choi
,
J.
,
Kudrolli
,
A.
,
Rosales
,
R. R.
, and
Bazant
,
M. Z.
, 2004, “
Diffusion and Mixing in Gravity-Driven Dense Granular Flows
,”
Phys. Rev. Lett.
0031-9007,
92
(
17
), p.
174301
.
7.
Bazant
,
M. Z.
, 2003, “
A Theory of Cooperative Diffusion in Dense Granular Flows
,” Report No. cond-mat/0307379.
8.
Bazant
,
M. Z.
, 2006, “
The Spot Model for Random-Packing Dynamics
,”
Mech. Mater.
0167-6636,
38
(
8–10
), pp.
717
731
.
9.
Tsuji
,
Y.
,
Kawaguchi
,
T.
, and
Tanaka
,
T.
, 1993, “
Discrete Particle Simulation of Two-Dimensional Fluidized Bed
,”
Powder Technol.
0032-5910,
77
, pp.
79
87
.
10.
Hoomans
,
B. P.
,
Kuipers
,
J. A.
,
Briels
,
W. J.
, and
van Swaaij
,
W. P.
, 1996, “
Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas-Fluidised Bed: A Hard-Sphere Approach
,”
Chem. Eng. Sci.
0009-2509,
51
(
1
), pp.
99
118
.
11.
Xu
,
B. H.
, and
Yu
,
A. B.
, 1997, “
Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method With Computational Fluid Dynamics
,”
Chem. Eng. Sci.
0009-2509,
52
(
16
), pp.
2785
2809
.
12.
Kafui
,
K. D.
,
Thornton
,
C.
, and
Adams
,
M. J.
, 2002, “
Discrete Particle-Continuum Fluid Modelling of Gas-Solid Fluidised Beds
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2395
2410
.
13.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T.
, 1993, “
MFIX Documentation: Theory Guide
,” National Energy Technology Laboratory, Department of Energy, Technical Note Nos. DOE/METC-95/1013 and NTIS/DE95000031 (see also http://www.mfix.orghttp://www.mfix.org).
14.
Syamlal
,
M.
, 1987. “
The Particle-Particle Drag Term in a Multiparticle Model of Fluidization
,” National Energy Technology Laboratory, Department of Energy, Topical Report Nos. DOE/MC/21353-2373, and NTIS/DE87006500.
15.
Syamlal
,
M.
, 1987, “
A Review of Granular Stress Constitutive Relations
,” National Energy Technology Laboratory, Department of Energy, Technical Note Nos. DOE/MC21353-2372 and NTIS/DE87006499.
16.
Jenike
,
A. W.
, 1987, “
A Theory of Flow of Particulate Solids in Converging and Diverging Channels Based on a Conical Yield Function
,”
Powder Technol.
0032-5910,
50
, pp.
229
236
.
17.
Schaeffer
,
D. G.
, 1987, “
Instability in the Evolution Equations Describing Incompressible Granular Flow
,”
J. Differ. Equations
0022-0396,
66
, pp.
19
50
.
18.
Cundall
,
P. A.
, and
Strack
,
D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
65
.
19.
Silbert
,
L. E.
,
Ertas
,
D.
,
Grest
,
G. S.
,
Halsey
,
T. C.
,
Levine
,
D.
, and
Plimpton
,
S. J.
, 2001, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
1063-651X,
64
(
5
), p.
051302
.
20.
Boyalakuntla
,
D.
, 2003, “
Simulation of Granular and Gas-Solid Flows Using Discrete Element Method
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.
21.
Anderson
,
T. B.
, and
Jackson
,
R.
, 1967, “
A Fluid Mechanical Description of Fluidised Beds
,”
Ind. Eng. Chem. Fundam.
0196-4313,
6
, pp.
527
539
.
22.
Ergun
,
S.
, 1952, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
89
94
.
23.
Wen
,
C. Y.
, and
Yu
,
Y. H.
, 1966, “
Mechanics of Fluidization
,”
Fluid Particle Technology
,
Chemical Engineering Progress Symposium Series
Vol.
62
,
American Institute of Chemical Engineers
,
New York
, pp.
100
111
.
24.
Syamlal
,
M.
, 1998, “
MFIX Documentation: Numerical Technique
,” National Energy Technology Laboratory, Department of Energy, Technical Note Nos. DOE/MC31346-5824 and NTIS/DE98002029 (see also http://www.mfix.orghttp://www.mfix.org).
25.
Goldschmidt
,
M. J.
,
Link
,
J. M.
,
Mellema
,
S.
, and
Kuipers
,
J. A.
, 2003, “
Digital Image Analysis Measurements of Bed Expansion and Segregation Dynamics in Dense Gas-Fluidised Beds
,”
Powder Technol.
0032-5910,
138
, pp.
135
159
.
26.
Sun
,
J.
, and
Battaglia
,
F.
, 2006, “
Hydrodynamic Modeling of Particle Rotation for Segregation in Bubbling Gas-Fluidized Beds
,”
Chem. Eng. Sci.
0009-2509,
61
(
5
), pp.
1470
1479
.
27.
Sun
,
J.
,
Battaglia
,
F.
, and
Subramaniam
,
S.
, 2006, “
Dynamics and Structures of Segregation in a Dense, Vibrating Granular Bed
,”
Phys. Rev. E
1063-651X,
74
(
6
), p.
061307
.
28.
Sun
,
J.
, and
Battaglia
,
F.
, 2007, “
Analysis of Solid Structures and Stresses in a Gas Fluidized Bed
,” American Society of Mechanical Engineers, Fluids Engineering Division (Publication), FED Report No. FEDSM2007-37189.
29.
Goldschmidt
,
M.
, 2001, “
Hydrodynamic Modelling of Fluidised Bed Spray Granulation
,” Ph.D. thesis, Twente University, Netherlands.
30.
Sundaresan
,
S.
, 2000, “
Modeling the Hydrodynamics of Multiphase Flow Reactors: Current Status and Challenges
,”
AIChE J.
0001-1541,
46
(
6
), pp.
1102
1105
.
31.
Srivastava
,
A.
, and
Sundaresan
,
S.
, 2003, “
Analysis of a Frictional-Kinetic Model for Gas-Particle Flow
,”
Powder Technol.
0032-5910,
129
, pp.
72
85
.
32.
Dreeben
,
T. D.
, and
Pope
,
S. B.
, 1992, “
Nonparametric Estimation of Mean Fields With Application to Particle Methods for Turbulent Flows
,” Sibley School of Mechanical and Aerospace Engineering, Cornell University, Technical Report No. FDA 92-13.
33.
Garg
,
R.
,
Narayanan
,
C.
,
Lakehal
,
D.
, and
Subramaniam
,
S.
, 2007, “
Accurate Numerical Estimation of Interphase Momentum Transfer in Lagrangian-Eulerian Simulations of Dispersed Two-Phase Flows
,”
Int. J. Multiphase Flow
0301-9322, doi: 10.1016/j.ijmultiphaseflow.2007.06.002
You do not currently have access to this content.