Performance enhancement of three-dimensional S-duct diffusers by secondary flow and separation control using vortex generator jets is the objective of the current experimental investigation. Two different diffuser geometries namely, a circular diffuser and a rectangular—to—circular transitioning diffuser were studied. The experiments were performed in uniform inflow conditions at a Reynolds number of 7.8×105 and the performance evaluation of the diffusers was carried out in terms of static pressure recovery and quality (flow uniformity) of the exit flow. Detailed measurements that included total pressure, velocity distribution, surface static pressure, skin friction, and boundary layer measurements were taken and these results are presented here in terms of static pressure rise, distortion coefficient, total pressure loss coefficient, and the transverse velocity vectors at the duct exit. The use of vortex generator jets resulted in around 26% in total pressure loss and about 22% decrease in flow distortion coefficients in the circular and transitioning diffusers. The mass flow rate of the air injected through the VGJ was about 0.1% of the mass flow rate of the main flow for secondary flow control and about 0.06% of the main flow for separation control. The physical mechanism of the flow control devices used has been explored. The structure of the vortices generated by the control methods are presented in the form of smoke visualization images. The method of flow control used here is perceived to have applications in turbomachinery like turbines and compressors.

1.
Reichert
,
B. A.
, and
Wendt
,
B. J.
, “
Experimental Investigation of S-duct Flow Control using Arrays of Low Profile Vortex Generator
,” AIAA Paper 93-0018, 1993.
2.
Reichert
,
B. A.
, and
Wendt
,
B. J.
, “
Improving Diffusing S-duct Performance by Secondary Flow Control
,” NASA Technical Memorandum 106492, 1994.
3.
Reichert
,
B. A.
, and
Wendt
,
B. J.
, 1996, “
Improving Curved Subsonic Diffuser Performance with Vortex Generators
,”
AIAA J.
0001-1452,
34
, pp.
65
72
.
4.
Lakshminarayana
,
B.
, 1996, “
Fluid Dynamics and Heat Transfer of Turbomachinery
,”
1st ed.
Wiley
, New York, pp.
322
328
.
5.
Foster
,
J.
,
Wendt
,
B. J.
,
Reichert
,
B. A.
, and
Okiishi
,
T. H.
, 1997, “
Flow through a Rectangular – to – Semi-annular Diffusing Transition Duct
,”
J. Propul. Power
0748-4658,
13
, pp.
312
317
.
6.
Sullerey
,
R. K.
,
Mishra
,
S.
, and
Pradeep
,
A. M.
, 2002, “
Application of Boundary Layer Fences and Vortex Generators in Improving the Performance of S-duct Diffusers
,”
J. Fluids Eng.
0098-2202,
124
, pp.
136
142
.
7.
Sullerey
,
R. K.
, and
Pradeep
,
A. M.
, 2002, “
Effectiveness of Flow Control Devices on S-duct Diffuser Performance in the Presence of Inflow Distortion
,”
Int. J. Turbo Jet Engines
0334-0082,
19
, pp.
259
270
.
8.
Ball
,
W. H.
, 1985, “
Tests of Wall Suction and Blowing in Highly Offset Diffusers
,”
J. Aircr.
0021-8669,
22
, pp.
161
167
.
9.
Kwong
,
A. H. M.
, and
Dowling
,
A. P.
, 1994, “
Active Boundary-Layer Control in Diffusers
,”
AIAA J.
0001-1452,
32
, pp.
2409
2414
.
10.
Innes
,
F.
,
Pearcey
,
H. H.
, and
Sykes
,
D. M.
, 1995, “
Improvements in the Performance of a Three Element High Lift System by the Application of Airjet Vortex Generators
,”
Aeronaut. J.
0001-9240,
99
, pp.
265
274
.
11.
Johnston
,
J. P.
, and
Nishi
,
M.
, 1990, “
Vortex Generator Jets – Means for Flow Separation Control
,”
AIAA J.
0001-1452,
28
, pp.
989
994
.
12.
Compton
,
D. A.
, and
Johnston
,
J. P.
, 1992, “
Streamwise Vortex Production by Pitched and Skewed Jets in a Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
30
, pp.
640
647
.
13.
Fric
,
T. F.
, and
Roshko
,
A.
, 1994, “
Vortical Structures in the Wake of a Transverse Jet
,”
J. Fluid Mech.
0022-1120,
279
, pp.
1
47
.
14.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
, 1996, “
An Experimental Study of Round Jets in Cross-flow
,”
J. Fluid Mech.
0022-1120,
306
, pp.
111
144
.
15.
Barberopoulos
,
A. A.
, and
Garry
,
K. P.
, 1998, “
The Effect of Skewing on the Vorticity Produced by an Airjet Vortex Generator
,”
Aeronaut. J.
0001-9240,
102
, pp.
171
177
.
16.
Zhang
,
X.
, 2003, “
The Evolution of Co-rotating Vortices in a Canonical Boundary Layer with Inclined Jets
,”
Phys. Fluids
1070-6631,
15
, pp.
3693
3702
.
17.
Khan
,
Z. U.
, and
Johnston
,
J. P.
, 2002, “
On Vortex Generating Jets
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
506
511
.
18.
Johnston
,
J. P.
, “
Pitched and Skewed Vortex Generator Jets for Control of Turbulent Boundary Layer Separation: A Review
,” FEDSM99-6917,
Proceedings of 3rd ASME/JSME Joint Fluids Engineering Conference
, San Francisco, California, USA, 1999.
19.
Hamstra
,
J. W.
,
Miller
,
D. N.
,
Truax
,
P. P.
,
Anderson
,
B. A.
, and
Wendt
,
B. J.
, 2000, “
Active Inlet Flow Control Technology Demonstration
,”
Aeronaut. J.
0001-9240,
104
, pp.
473
479
.
20.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
Turbine Separation Control using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
198
206
.
21.
Volino
,
R. J.
, 2003, “
Separation Control on Low-Pressure Turbine Airfoils using Synthetic Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
765
777
.
22.
Rixon
,
G. S.
, and
Johari
,
H.
, 2003, “
Development of a Steady Vortex Generator Jet in a Turbulent Boundary Layer
,”
J. Fluids Eng.
0098-2202,
125
, pp.
1006
1015
.
23.
Sullerey
,
R. K.
, and
Pradeep
,
A. M.
, “
Secondary Flows and Separation in S-duct Diffusers – Their Detection and Control
,” FEDSM2003-45109,
Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
, Honolulu, Hawaii, USA, 2003.
24.
Sullerey
,
R. K.
, and
Pradeep
,
A. M.
, 2004, “
Secondary Flow Control using Vortex Generator Jets
,”
J. Fluids Eng.
0098-2202,
126
, pp.
650
664
.
25.
Pradeep
,
A. M.
, and
Sullerey
,
R. K.
, “
Secondary Flow Control in Circular S-duct Diffusers using Vortex Generator Jets
,” AIAA2004-2615, AIAA 2nd Flow Control Conference, Portland, Oregon, USA, 2004.
26.
Miau
,
J. J.
,
Leu
,
T. S.
,
Chou
,
J. H.
,
Lin
,
S. A.
, and
Lin
,
C. K.
, 1990, “
Flow Distortion in a Circular-to-Rectangular Transition
,”
AIAA J.
0001-1452,
28
, pp.
1447
1456
.
27.
Patel
,
V. C.
, 1965, “
Calibration of the Preston Tube and Limitations on its Use in Pressure Gradients
,”
J. Fluid Mech.
0022-1120,
23
, pp.
185
208
.
28.
Vagt
,
J. D.
, and
Fernholz
,
H.
, 1973, “
Use of Surface Fences to Measure Wall Shear Stress in Three-Dimensional Boundary Layers
,”
Aeronaut. Q.
0001-9259,
24
, pp.
87
91
.
29.
Pradeep
,
A. M.
, and
Sullerey
,
R. K.
, 2003, “
A Displacement Based Wall Shear Stress Sensor
,”
J. Inst. Eng. (India), Part AG
0257-3431,
84
, pp.
27
31
.
30.
Frei
,
D.
, and
Thomann
,
H.
, 1980, “
Direct Measurements of Skin Friction in a Turbulent Boundary Layer with a Strong Adverse Pressure Gradient
,”
J. Fluid Mech.
0022-1120,
101
, pp.
79
95
.
31.
Ohman
,
L. H.
, and
Nguyen
,
V. D.
, “
Applications of the Five Hole Probe Technique for Flow Field Surveys at the Institute for Aerospace Research
,”
Proceedings of the AGARD Meeting on Wall Interference, Support Interference and Flow Field Measurements
, 1993.
32.
Nowak
,
C. F. R.
, 1973, “
Improved Calibration Method for a Five-hole Spherical Pitot Probe
,”
J. Phys. E
0022-3735,
3
(
1-2
), p.
21
.
33.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowell
,
R. B.
, 1985, “
ASME Measurement Uncertainty
,”
J. Fluids Eng.
0098-2202,
107
, pp.
161
164
.
34.
Moffat
,
R. J.
, 1985, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
J. Fluids Eng.
0098-2202,
107
, pp.
173
180
.
35.
Kline
,
S. J.
, 1985, “
The Purposes of Uncertainty Analysis
,”
J. Fluids Eng.
0098-2202,
107
, pp.
153
160
.
You do not currently have access to this content.