The purpose of this work is to investigate the liquid ejection process of a novel microdroplet generator applying a computational approach. In simulations, the theoretical model is based on the unsteady three-dimensional conservation equations of mass and momentum with the treatment of surface tension effect at the gas-liquid boundary by the continuous surface force scheme. The volume-of-fluid method along with the piecewise linear interface construction technique is implemented to describe the interfacial movements. The time evolution of droplet meniscus shape is predicted and compared to Shield’s microphotographed images for the computer code validation. To explore the practicability of the proposed new microdroplet generator, the flow behavior during the stages of liquid ejection and droplet formation are examined with water as the baseline test fluid for a full ejection cycle of 50μs. In addition, 12 numerical experiments were conducted to determine droplet ejection characteristics by systematically varying the ejection time period as well as surface tension and viscosity of liquids. Simulations reveal that a liquid strand with a shorter breakup time and a longer breakup length could be achieved by reducing the ejection time and decreasing the liquid surface tension and viscosity. For the ejection time greater than 4.0μs, the ejection velocity is too low to render a sufficient momentum for droplet breakup. The feasibility studies have demonstrated the potential of this proposed microdroplet generator in dispensing diverse liquids with the surface tension and the viscosity up to 0.08Nm and 3.0cps.

1.
Tseng
,
F. G.
, 2001, “
Micro-Droplet Generators
,”
MEMS Handbook
,
M.
Gad-el-Hak
, ed.,
CRC Press
,
Boca Raton
, pp.
30
-1–
30
.
2.
Krestschmer
,
J.
,
Tille
,
C.
, and
Ederer
,
I.
, 1997, “
A Drop-on-Demand Inkjet Printhead for a Wide Range of Applications
,” IS&Ts NIP 14: 1997 International Conference on Digital Printing Technologies, Seattle, pp.
343
347
.
3.
Le
,
H. P.
, 1998, “
Progress and Trends in Ink-jet Printing Technology
,”
J. Imaging Sci. Technol.
1062-3701,
42
(
1
), pp.
49
62
.
4.
Allen
,
R. R.
,
Meyer
,
J. D.
, and
Knight
,
W. R.
, 1985, “
Thermodynamics and Hydrodynamics of Thermal Ink Jets
,”
Hewlett-Packard J.
0018-1153,
36
, May, pp.
21
27
.
5.
Lee
,
F. C.
,
Mills
,
R. N.
, and
Talke
,
F. E.
, 1984, “
The Application of Drop-on-Demand Ink Jet Technology to Color Printing
,”
IBM J. Res. Dev.
0018-8646,
28
(
3
), pp.
307
313
.
6.
Asai
,
A.
,
Hara
,
T.
, and
Endo
,
I.
, 1987, “
One Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers
,”
Jpn. J. Appl. Phys.
0021-4922,
20
(
10
), pp.
1794
–1
801
.
7.
Asai
,
A.
,
Hirasawa
,
S.
, and
Endo
,
I.
, 1988, “
Bubble Generation Mechanism in the Bubble Jet Recording Process
,”
J. Imaging Technol.
0747-3583,
14
, pp.
120
124
.
8.
Asai
,
A.
, 1992, “
Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
638
641
.
9.
Fromm
,
J. E.
, 1984, “
Numerical Calculations of the Fluid Dynamics of Drop-on-Demand Jets
,”
IBM J. Res. Dev.
0018-8646,
28
(
3
), pp.
322
333
.
10.
Shield
,
T. W.
,
Bogy
,
D. B.
, and
Talke
,
P. E.
, 1987, “
Drop Formation by DoD Ink-jet Nozzles: A Comparison of Experiment and Numerical Simulation
,”
IBM J. Res. Dev.
0018-8646,
31
(
1
), pp.
96
110
.
11.
Pimbley
,
W. T.
, 1976, “
Drop Formation From a Liquid Jet: A Linear One-Dimensional Analysis Considered as a Boundary Value Problem
,”
IBM J. Res. Dev.
0018-8646,
20
, pp.
148
156
.
12.
Chen
,
P. H.
,
Chen
,
W. C.
, and
Chang
,
S. H.
, 1997, “
Bubble Growth and Ink Ejection Process of a Thermal Inkjet Printhead
,”
Int. J. Mech. Sci.
0020-7403,
39
(
6
), pp.
683
695
.
13.
Chen
,
P. H.
,
Peng
,
H. Y.
,
Liu
,
H. Y.
,
Chang
,
S. L.
,
Wu
,
T. I.
, and
Cheng
,
C. H.
, 1999, “
Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead
,”
Int. J. Mech. Sci.
0020-7403
41
(
2
), pp.
235
248
.
14.
Rider
,
W. J.
,
Kothe
,
D. B.
,
Mosso
,
S. J.
,
Cerutti
,
J. H.
, and
Hochstein
,
J. I.
, 1995, “
Accurate Solution Algorithms for Incompressible Multiphase Flows
,” AIAA
95
0699
, Reno, NV.
15.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardoovelli
,
R.
, and
Zaleski
,
S.
, 1999, “
Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
0021-9991
152
, pp.
423
456
.
16.
Delnoij
,
E.
,
Kuipers
,
J. A. M.
, and
Swaaij
,
W. P. M.
, 1997, “
Computational Fluid Dynamics Applied to Gas-Liquid Contactors
,”
Chem. Eng. Sci.
0009-2509
52
(
21
), pp.
3623
3638
.
17.
Kothe
,
D. B.
,
Rider
,
W. J.
,
Mosso
,
S. J.
,
Brock
,
J. S.
, and
Hochstein
,
J. I.
, 1996, “
Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions
,” AIAA
96
0859
, Reno, NV.
18.
Meier
,
M.
,
Yadigaroglu
,
G.
, and
Smith
,
B. L.
, 2002, “
A Novel Technique for Including Surface Tension in PLIC-VOF Methods
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
61
73
.
19.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1998, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
20.
Feng
,
J. Q.
, 2002, “
A General Fluid Dynamics Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices
,”
J. Imaging Sci. Technol.
1062-3701,
46
5
, pp.
398
408
.
21.
Wu
,
H. C.
,
Hwang
,
W. S.
, and
Lin
,
H. J.
, 2004, “
Development of a Three-Dimensional System for Micro-Inkjet and its Experimental Verification
,”
Mater. Sci. Eng., A
0921-5093,
373
, pp.
268
278
.
22.
Cheng
,
C. H.
,
Hu
,
R. C.
,
Yeh
,
D. C.
, and
Lin
,
Y. P.
, 2004, “
Structure and Fabrication of a Novel Piezoelectric Micro-Droplet Generator
,” Taiwan ROC Patent No.: 194947 (in Chinese).
23.
ESI-CFD
, 2004,
CFD-ACE(U)® V2004 User’s Manual
,
ESI-CFD Inc.
,
Huntsville, AL
; www.cfdrc.comwww.cfdrc.com.
24.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
25.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720
7
, pp.
147
163
.
26.
Jang
,
D. S.
,
Jetli
,
R.
, and
Acharya
,
S.
, 1986, “
Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems
,”
Numer. Heat Transfer
0149-5720
10
, pp.
209
228
.
You do not currently have access to this content.