A relationship between the global variables and the dynamic flow structure numerically obtained for a low specific speed centrifugal pump is presented in this paper. A previously developed unsteady flow model is used to correlate the dynamic field with the flow characteristics inside the impeller and volute of a single-stage commercial pump. Actually, the viscous incompressible Navier-Stokes equations are solved within a 3D unsteady flow model. A sliding mesh technique is applied to take into account the impeller-volute interaction. After the numerical model has been successfully compared with the experimental data for the unsteady pressure fluctuations pattern in the volute shroud, a new step is proposed in order to correlate the observed effects with the flow structure inside the pump. In particular, the torque as a function of the relative position of the impeller blades is related to the blades loading, and the secondary flow in the volute is related to the different pressure patterns numerically obtained. Local flow analysis and qualitative study of the helicity in different volute sections is performed. The main goal of the study presented is the successful correlation of local and global parameters for the flow in a centrifugal pump. The pressure forces seem to be the main driven mechanism to establish the flow features both in the impeller and volute, for a wide range of operating conditions.

1.
Laskminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley Interscience
, New York.
2.
Engeda
,
A.
, 1998, “
From the Crystal Palace to the Pump Room
,” International Gas Turbine & Aeroengine Congress, Stockholm, Sweden, 98-GT-22.
3.
Brennen
,
C. E.
, 1994,
Hydrodynamics of Pumps
,
Oxford University Press
, New York.
4.
Japikse
,
D.
,
Marscher
,
W. D.
, and
Furst
,
R. B.
, 1997,
Centrifugal Pump Design and Performance
,
Concepts ETI, Inc
,
New York
.
5.
Gopalakrishnan
,
S.
, 1997, “
Pump Research and Development—Past, Present, and Future. An American Perspective
,” ASME-FEDSM-97-3387.
6.
Karassik
,
I. G.
,
Krutzsch
,
W. C.
,
Fraser
,
W. H.
, and
Messina
,
J. P.
, 1985,
Pump Handbook
,
2nd ed.
McGraw Hill
, New York.
7.
Greitzer
,
E. M.
, 1981, “
The Stability of Pumping Systems. The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
103
, pp.
193
242
.
8.
Morgenroth
,
M.
, and
Weaver
,
D. S.
, 1998, “
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
736
743
.
9.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
, 1995, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
30
35
.
10.
Binder
,
R. C.
,
Lafayette
,
I. N. D.
, and
Knapp
,
R. T.
, 1936, “
Experimental Determination of the Flow Characteristics in the Volutes of Centrifugal Pumps
,”
Trans. ASME
0097-6822
58-4
, pp.
649
663
.
11.
Bowerman
,
R. D.
, and
Acosta
,
A. J.
, 1957, “
Effect of the Volute on Performance of a Centrifugal Pump Impeller
,”
Trans. ASME
0097-6822,
79
, pp.
1057
1069
.
12.
Adkins
,
D. R.
, and
Brennen
,
C. E.
, 1988, “
Analysis of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
,”
ASME J. Fluids Eng.
0098-2202,
110
, pp.
20
28
.
13.
Miner
,
S. M.
,
Flack
,
R. D.
, and
Allaire
,
P. E.
, 1992, “
Two Dimensional Flow Analysis of a Laboratory Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
333
339
.
14.
Kaupert
,
K. A.
, and
Staubli
,
T.
, 1999, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller. Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
621
626
.
15.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
, 1997, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
506
515
.
16.
Wuibaut
,
G.
,
Bois
,
G.
,
Dupont
,
P.
,
Caignaert
,
G.
, and
Stanilas
,
M.
, 2002, “
PIV Measurements in the Impeller and Vaneless Diffuser of a Radial Flow Pump in Design and Off-Design Operating Conditions
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
791
797
.
17.
Gunzburger
,
M. D.
, and
Nicolaides
,
R. A.
, 1993,
Incompressible Computational Fluid Dynamics. Trends and Advances
,
Cambridge University Press
, Cambridge.
18.
Lakshminarayana
,
B.
, 1991, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
315
352
.
19.
Denus
,
C. K.
, and
Góde
,
E.
, 1999, “
A Study in Design and CFD Analysis of a Mixed-Flow Pump Impeller
,” ASME-FEDSM-99-6858.
20.
Miner
,
S. M.
, 2000, “
Evaluation of Blade Passage Analysis Using Coarse Grids
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
345
348
.
21.
Arndt
,
N.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
, 1990, “
Experimental Investigation of Rotor-Stator Interaction in a Centrifugal Pump with Several Vaned Diffusers
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
98
108
.
22.
Baun
,
D. O.
,
Köstner
,
L.
, and
Flack
,
R. D.
, 2000, “
Effect of Relative Impeller-to-Volute Position on Hydraulic Efficiency and Static Radial Force Distribution in a Circular Volute Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
588
605
.
23.
Aysheshim
,
W.
, and
Stoffel
,
B.
, 2000, “
Numerical and Experimental Investigations on a Centrifugal Pump Stage With and Without Vaned Diffuser: Experimental Part
,” IAHR,
Proceedings of the XXI Symposium on Hydraulic Machinery and Systems
.
24.
Croba
,
D.
, and
Kueny
,
J. L.
, 1996, “
Numerical Calculation of 2D, Unsteady Flow in Centrifugal Pumps: Impeller and Volute Interaction
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
, pp.
467
481
.
25.
Longatte
,
F.
, and
Kueny
,
J. L.
, 1999, “
Analysis of Rotor-Stator-Circuit Interactions in a Centrifugal Pump
,” ASME-FEDSM-99-6866.
26.
Shi
,
F.
, and
Tsukamoto
,
H.
, 2001, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
466
474
.
27.
Blanco
,
E.
,
Fernández
,
J.
,
González
,
J.
, and
Santolaria
,
C.
, 2000, “
Numerical Flow Simulation in a Centrifugal Pump with Impeller-Volute Interaction
,” ASME-FEDSM-00-11297.
28.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
, 2002 “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
348
355
.
29.
British Standard BS-5316 Part-2, 1977, Acceptance Tests for Centrifugal, Mixed Flow and Axial Pumps.”
30.
González
,
J.
, 2000, “
Modelización Numérica del Flujo no Estacionario en Bombas Centrífugas. Efectos Dinámicos de la Interacción entre Rodete y Voluta
, Ph.D. thesis (in Spanish), Universidad de Oviedo, Spain.
31.
Freitas
,
C. J.
, 1993, “
Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
339
340
.
32.
González
,
J.
,
Santolaria
,
C.
,
Blanco
,
E.
, and
Fernández
,
J.
, 2002, “
Unsteady Flow Structure on a Centrifugal Pump: Experimental and Numerical Approaches
,” ASME-FEDSM2002-31182.
33.
Tsukamoto
,
H.
,
Uno
,
M.
,
Hamafuku
,
N.
, and
Okamura
,
T.
, 1995, “
Pressure Fluctuation Downstream of a Diffuser Pump Impeller
,”
ASME FED
,
216
, pp.
133
138
.
34.
Goto
,
A.
, and
Zangeneh
,
M.
, 2002, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
319
328
.
You do not currently have access to this content.