The flow of viscoplastic liquids is studied via a finite element stabilized method. Fluids, such as some food products, blood, mud, and polymer solutions, exhibit viscoplastic behavior. In order to approximate this class of liquids, a mechanical model, based on the principles of power expended and mass conservation, is exploited with the Papanastasiou approximation for Casson equation employed to model viscoplasticity. The approximation for the nonlinear set of partial differential equations is performed, using a stabilized finite element methodology. A Galerkin least-squares strategy is employed to avoid the well-known difficulties of the classical Galerkin method in isochoric flows. It circumvents the Babuška-Brezzi condition and handles the asymmetry of the advective operator in high advective flows. Some two-dimensional (2D) viscoplastic flows through a 4:1 planar expansion, for a range of Casson (0Ca10) and Reynolds (0Re50) numbers, have been investigated, paying special attention to the characterization of vortex length and unyielded regions. The numerical results show the arising of regions of unyielded material throughout the flow, strongly affecting the vortex structure, which is reduced with the increase of the Casson number even in flows with considerable inertia.

1.
Crochet
,
M. J.
,
Davies
,
A. R.
, and
Walters
,
K.
, 1984,
Numerical Simulation of Non-Newtonian Flow
, Vol.
1
,
Rheology Series
,
Elsevier
,
Amsterdam
.
2.
Owens
,
R. G.
, and
Phillips
,
T. N.
, 2002,
Computational Rheology
,
Imperial College Press
,
London
.
3.
Reiner
,
M.
, 1960,
Deformation, Strain and Flow
,
Interscience
,
New York
.
4.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics
,
John Wiley
,
New York
.
5.
Papanastasiou
,
T. C.
, 1987, “
Flows of Materials With Yield
,”
J. Rheol.
0148-6055,
31
, pp.
385
404
.
6.
Barnes
,
H. A.
, 1999, “
The Yield Stress—A Review or ‘παντα ρει’—Everything Flows?
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
81
, pp.
133
178
.
7.
Casson
,
N. A.
, 1959, “
Rheology of Disperse Systems
,”
Proceedings of a Conference Organized by the British Society of Rheology
,
C. C.
Mills
, Ed.,
Pergamon Press
,
New York
.
8.
Chevalley
,
J.
, 1974, “
Rheology of Chocolate
,”
J. Texture Stud.
0022-4901,
6
, pp.
177
196
.
9.
Casas
,
J. A.
,
Santos
,
V. E.
, and
Garcya-Ochoa
,
F.
, 2000, “
Xanthan Gum Production Under Several Operational Conditions: Molecular Structure and Rheological Properties
,”
Enzyme Microb. Technol.
0141-0229,
26
(
2–4
), pp.
282
291
.
10.
Macosko
,
C. W.
, 1994,
Rheology, Principles, Measurements and Applications
,
Wiley-VCH
,
New York
.
11.
Cokelet
,
G. R.
, 1999, “
Viscometric, in Vitro and in Vivo Blood Viscosity Relationships: How Are They Related?
,”
Biorheology
0006-355X,
36
(
5–6
), pp.
343
358
.
12.
Pak
,
B.
,
Cho
,
Y. I.
, and
Choi
,
S. U. S.
, 1990, “
Separation and Reattachment of Non-Newtonian Fluid Flows in a Sudden Expansion Pipe
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
37
, pp.
175
199
.
13.
Abdali
,
S. S.
,
Mitsoulis
,
E.
, and
Markatos
,
N. C.
, 1992, “
Entry and Exit Flows of Bingham Fluids
,”
J. Rheol.
0148-6055,
36
, pp.
389
407
.
14.
Pham
,
T. V.
, and
Mitsoulis
,
E.
, 1994, “
Entry and Exit Flows of Casson Fluids
,”
Can. J. Chem. Eng.
0008-4034,
72
, pp.
1080
1084
.
15.
Vradis
,
G. C.
, and
Ötüngen
,
M. V.
, 1997, “
The Axisymmetric Sudden Expansion of a Non-Newtonian Viscoplastic Fluid
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
193
200
.
16.
Jay
,
P.
,
Magnin
,
A.
, and
Piau
,
J. M.
, 2001, “
Viscoplastic Fluid Flow Through a Sudden Axisymmetric Expansion
,”
AIChE J.
0001-1541,
47
, pp.
2155
2166
.
17.
Reis
,
L. A.
, Jr.
, and
Naccache
,
M. F.
, 2003, “
Analysis of Non-Newtonian Flows Through Contractions and Expansions
,”
Proceedings of XVII COBEM
,
São Paulo
,
ABCM
,
São Paulo
.
18.
Neofytou
,
P.
, and
Drikakis
,
D.
, 2003, “
Non-Newtonian Flow Instability in a Channel With a Sudden Expansion
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
111
, pp.
127
150
.
19.
Mitsoulis
,
E.
, and
Huilgol
,
R. R.
, 2004, “
Entry Flows of Bingham Plastics in Expansions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
122
, pp.
45
54
.
20.
Ciarlet
,
P. G.
, 1978,
The Finite Element Method for Elliptic Problems
,
North-Holland
,
Amsterdam
.
21.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, p.
199
259
.
22.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
, 1986, “
A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuška-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
85
99
.
23.
Franca
,
L. P.
, and
Frey
,
S.
, 1992, “
Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
99
, pp.
209
233
.
24.
Karam Filho
,
J.
,
Guerreiro
,
J. N.
, and
Almeida
,
R. C.
, 2003, “
Stabilized FEM Methods for Generalized Newtonian Flows
,”
Proceedings of the XVII COBEM
,
São Paulo
,
ABCM
,
São Paulo
.
25.
Perić
,
D.
, and
Slijepčević
,
S.
, 2001, “
Computational Modelling of Viscoplastic Fluids Based on a Stabilized Finite Element Method
,”
Eng. Comput.
0264-4401,
18
, pp.
577
591
.
26.
Maniatty
,
A. M.
,
Liu
,
Y.
,
Klaas
,
O.
, and
Shephard
,
M S.
, 2001, “
Stabilized Finite Element Method for Viscoplastic Flow: Formulation and a Simple Progressive Solution Strategy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4609
4625
.
27.
Gurtin
,
M. E.
, 1981,
An Introduction to Continuum Mechanics
,
Academic Press
,
New York
.
28.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
, 1982, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
0167-8299,
1
, pp.
1
70
.
29.
Truesdell
,
C.
, and
Toupin
,
R. A.
, 1960, “
The Classical Field Theories
,”
Encyclopedia of Physics
,
S.
Flugge
(ed.),
Springer-Verlag
,
Berlin
, Vol.
III/1
.
30.
Dahlquist
,
G.
, and
Bjorck
,
A.
, 1969,
Numerical Methods
,
Prentice-Hall
,
Englewood Cliffs, N.J.
.
31.
Hannani
,
S. K.
,
Stanislas
,
M.
, and
Dupont
,
P.
, 1995, “
Incompressible Navier-Stokes Computations With SUPG and GLS Formulations—A Comparison Study
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
124
, pp.
153
170
.
32.
Mitsoulis
,
E.
, and
Zisis
,
T.
, 2001, “
Flow of Bingham Plastics in a Lid-Driven Square Cavity
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
101
, pp.
173
180
.
You do not currently have access to this content.