The paper investigates the effect of channel aspect ratio on the flow performance of a newly introduced spiral-channel viscous micropump. An approximate 2D analytical solution for the flow field, which ignores channel curvature but accounts for a finite wall height, is first developed at the lubrication limit. A number of 3D models for spiral pumps with different aspect ratios are then built and analyzed using the finite volume method. Numerical and analytical results are in good agreement and tend to support one another. The results are compared with an approximate 2D analytical solution developed for infinite aspect ratio, which neglects the effect of side walls, and assumes uniform velocity distribution across the channel width. The error in this approximation was found to exceed 5% for aspect ratios less than 10. Pressure and drag shape factors were introduced in the present work to express the effect of the pressure difference and boundary velocity on the flow rate at various aspect ratios for both moving and stationary walls. Also, it has been found numerically that the flow rate varies linearly with both the pressure difference and boundary velocity, which supports the validity of the linear lubrication model employed.

1.
Terry
,
S. C.
,
Jerman
,
J. H.
, and
Angell
,
J. B.
, 1979, “
A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer
,”
IEEE Trans. Electron Devices
0018-9383,
ED-26
(
12
), pp.
1880
1886
.
2.
Manz
,
A.
,
Miyahara
,
Y.
,
Miura
,
J.
,
Watanabe
,
Y.
,
Miyagi
,
H.
, and
Sato
,
K.
, 1990, “
Design of an Open-Tubular Column Liquid Chromatograph Using Silicon Chip Technology
,”
Sens. Actuators B
0925-4005,
1
, pp.
249
255
.
3.
Harrison
,
D. J.
,
Manz
,
A.
,
Fan
,
Z.
,
Ludi
,
H.
, and
Widmer
,
H. M.
, 1992, “
Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip
,”
Anal. Chem.
0003-2700,
64
, pp.
1926
1932
.
4.
Wilding
,
P.
,
Shoffner
,
M. A.
, and
Kricka
,
L. J.
, 1994, “
PCR in a Silicon Microstructure
,”
Clin. Chem.
0009-9147,
40
(
9
), pp.
1815
1818
.
5.
Kaplan
,
W.
,
Elderstig
,
H.
, and
Vieider
,
C.
, 1994, “
A Novel Fabrication Method of Capillary Tubes on Quartz for Chemical Analysis Applications
,”
Proc. IEEE MEMS ’94, Int. Conf. MEMS
, Oiso, Japan, pp.
63
68
.
6.
Srinivasan
,
R.
,
Firebaugh
,
S. L.
,
Hsing
,
I.
,
Ryley
,
J.
,
Harold
,
M. P.
,
Jensen
,
K. F.
, and
Schmidt
,
M. A.
, 1997, “
Chemical Performance and High Temperature Characterization of Micromachined Chemical Reactors
,”
Proc. Transducers ’97
, Chicago, IL, Vol.
1
, pp.
163
166
.
7.
Smits
,
J.
, 1985, “
Piezoelectric Pump for Peristaltic Fluid Displacements
,” Dutch Patent No. 8 302 860.
8.
Van Lintel
,
H.
,
Van de Pol
,
F.
, and
Bouwstra
,
S.
, 1988, “
A Piezoelectric Micropump Based on Micromachining of Silicon
,”
Sens. Actuators
0250-6874,
15
(
2
), pp.
153
167
.
9.
Manz
,
A.
,
Effenhauser
,
C.
,
Burggraf
,
N.
,
Harrison
,
D.
,
Seiler
,
K.
, and
Fluri
,
K.
, 1994, “
Electroosmotic Pumping and Electrophoretic Separations for Miniaturized Chemical Analysis Systems
,”
J. Micromech. Microeng.
0960-1317,
4
(
4
), pp.
257
265
.
10.
Woias
,
P.
, 2005, “
Micropumps-Past, Progress and Future Prospects
,”
Sens. Actuators B
0925-4005,
105
, pp.
28
38
.
11.
Sen
,
M.
,
Wajerski
,
D.
, and
Gad-El-Hak
,
M.
, 1996, “
A Novel Pump for MEMS Applications
,”
ASME J. Fluids Eng.
0098-2202,
118
(
3
), pp.
624
627
.
12.
Day
,
R.
, and
Stone
,
H.
, 2000, “
Lubrication Analysis and Boundary Integral Simulations of a Viscous Micropump
,”
J. Fluid Mech.
0022-1120,
416
, pp.
197
216
.
13.
Darabi
,
J.
,
Ohadi
,
M.
, and
De Voe
,
D.
, 2001, “
An Electrohydrodynamic Polarization Micropump for Electronic Cooling
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
98
106
.
14.
Kilani
,
M. I.
,
Galambos
,
P. C.
,
Haik
,
Y. S.
, and
Chen
,
C. J.
, 2003, “
Design and Analysis of a Surface Micromachined Spiral-Channel Viscous Pump
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
339
344
.
15.
Dean
,
W. R.
, 1927, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
4
, pp.
208
219
.
16.
Schlichting
,
H.
, 1951,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
17.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
Taylor and Francis Group
,
New York
.
You do not currently have access to this content.