Particle tracking velocimetry has been used to measure the velocity fields of both continuous phase and dispersed microbubble phase, in a turbulent boundary layer, of a channel flow. Hydrogen and oxygen microbubbles were generated by electrolysis. The average size of the microbubbles was 15μm in radius. Drag reductions up to 40% were obtained, when the accumulation of microbubbles took place in a critical zone within the buffer layer. It is confirmed that a combination of concentration and distribution of microbubbles in the boundary layer can achieve high drag reduction values. Microbubble distribution across the boundary layer and their influence on the profile of the components of the liquid mean velocity vector are presented. The spanwise component of the mean vorticity field was inferred from the measured velocity fields. A decrease in the magnitude of the vorticity is found, leading to an increase of the viscous sublayer thickness. This behavior is similar to the observation of drag reduction by polymer and surfactant injection into liquid flows. The results obtained indicate that drag reduction by microbubble injection is not a simple consequence of density effects, but is an active and dynamic interaction between the turbulence structure in the buffer zone and the distribution of the microbubbles.

1.
Kodama
,
Y.
,
Kakugawa
,
A.
,
Takahashi
,
T.
, and
Kawashima
,
H.
, 2000, “
Experimental Study on Microbubbles and Their Applicability to Ship for Skin Friction Reduction
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
582
588
.
2.
Gad-el-Hak
,
M.
, 2000,
Flow Control: Passive, Active and Reactive Flow Management
,
Cambridge University Press
, Cambridge, England.
3.
McCormick
,
M. E.
, and
Bhattacharyya
,
R.
, 1973, “
Drag Reduction on a Submersible Hull by Electrolysis
,”
Nav. Eng. J.
0028-1425,
85
, pp.
11
16
.
4.
Sanders
,
W. C.
,
Ivy
,
E. M.
,
Ceccio
,
S. L.
,
Dowling
,
D. R.
, and
Perlin
,
M.
, 2003, “
Microbubble Drag Reduction at High Reynolds Number
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45649.
5.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
, 1984, “
Reduction of Turbulent Skin Friction by Microbubbles
,”
Phys. Fluids
0031-9171,
27
, pp.
356
363
.
6.
Fontaine
,
A.
,
Deutsch
,
S.
,
Brungart
,
T. A.
,
Petrie
,
H. L.
, and
Fenstermacker
,
M.
, 1999, “
Drag Reduction by Coupled Systems: Microbubble Injection with Homogeneous Polymer and Surfactant Solutions
,”
Exp. Fluids
0723-4864,
26
, pp.
397
403
.
7.
Takahashi
,
T.
,
Kakugawa
,
A.
,
Kodama
,
Y.
, and
Makino
,
M.
, 2001, “
Experimental Study on Drag Reduction by Microbubbles Using a 50m-Long Flat Plate Ship
,”
Second International Symposium on Turbulence and Shear Flow Phenomena
,
1
, Stockholm, Sweden, pp.
175
180
.
8.
Kawamura
,
T.
,
Moriguchi
,
Y.
,
Kato
,
H.
,
Kakugawa
,
A.
, and
Kodama
,
Y.
, 2003, “
Effect of Bubble Size on the Microbubble Drag Reduction of a Turbulent Boundary Layer
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45645.
9.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
, 1985, “
Measurements of Local Skin Friction in a Reynolds Bubble-Modified Turbulent Boundary Layer
.”
J. Fluid Mech.
0022-1120,
156
, pp.
237
256
.
10.
Legner
,
H. H.
, 1984, “
A Simple Model for Gas Bubble Drag Reduction
,”
Phys. Fluids
0031-9171,
27
, pp.
2788
2790
.
11.
Kitagawa
,
A.
,
Sugiyama
,
K.
,
Ashihara
,
M.
,
Hishida
,
K.
, and
Kodama
,
Y.
, 2003, “
Measurement of Turbulence Modification by Microbubbles Causing Frictional Drag Reduction
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45648.
12.
Madavan
,
N. K.
,
Merkle
,
C. L.
, and
Deutsch
,
S.
, 1985b, “
Numerical Investigations into the Mechanisms of Microbubble Drag Reduction
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
370
377
.
13.
Xu
,
J.
,
Maxey
,
M. R.
, and
Karniadakis
,
G.
, 2002, “
Numerical Simulation of Turbulent Drag Reduction Using Micro-Bubbles
,”
J. Fluid Mech.
0022-1120,
468
, pp.
271
281
.
14.
Ferrante
,
A.
, and
Elghobashi
,
S.
, 2004, “
On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden with Microbubbles
,”
J. Fluid Mech.
0022-1120,
503
, pp.
345
355
.
15.
Arakawa
,
K.
,
Toda
,
K.
, and
Yamamoto
,
M.
, 2003, “
Modeling and Computational Study on Microbubble Two-Phase Turbulent Flow
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45760.
16.
Kunz
,
R. F.
,
Deutsch
,
S.
, and
Lindau
,
J. W.
, 2003, “
Two Fluid Modeling of Microbubble Turbulent Drag Reduction
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45640.
17.
Yamamoto
,
Y.
,
Gobara
,
R.
, and
Uemura
,
T.
, 2001, “
High-Efficiency Particle Detection Method Using 1D-correlation
,”
3rd Pacific Symposium on Flow Visualization and Image Processing
, Maui, HI, Paper No. F3130.
18.
Uemura
,
T.
,
Yamamoto
,
F.
, and
Ohmi
,
K.
, 1991, “
Mixing Flow in a Cylindrical Vessel Agitated by a Bubbling Jet
,”
Application of Laser Techniques to Fluid Mechanics
,
Springer-Verlag
, Berlin, pp.
512
536
.
19.
Stalisnas
,
M.
,
Okamoto
,
K.
, and
Kähler
,
C.
, 2003, “
Main Results of the First International PIV Challenge
,”
Meas. Sci. Technol.
0957-0233,
14
, pp.
R63
R89
.
20.
Hassan
,
Y. A.
,
Blanchat
,
T. K.
,
Seeley
, Jr.
C. H.
, and
Canaan
,
R. E.
, 1992, “
Simultaneous Velocity Measurements of Both Components of a Two-Phase Flow Using Particle Image Velocimetry
,”
Int. J. Multiphase Flow
0301-9322,
18
, pp.
371
395
.
21.
Djenidi
,
L.
,
Dubief
,
Y.
, and
Antonia
,
R. A.
, 1997,
Advantages of Using a Power Law in a Low Rθ Turbulent Boundary Layer
,”
Exp. Fluids
0723-4864,
22
, pp.
348
350
.
22.
Durst
,
F.
,
Kikura
,
H.
,
Lekakis
,
I.
,
Jovanovic
,
J.
, and
Ye
,
Q.
, 1996, “
Wall Shear Stress Determination from Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows
,”
Exp. Fluids
0723-4864,
20
, pp.
417
428
.
23.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
,
8th ed.
,
Springer
, New York.
24.
Warholic
,
M. D.
,
Massah
,
H.
, and
Hanratty
,
T. J.
, 1999, “
Influence of Drag-Reducing Polymers on Turbulence: Effects of Reynolds Number, Concentration and Mixing
,”
Exp. Fluids
0723-4864,
27
, pp.
461
472
.
25.
White
,
C. M.
,
Somandepalli
,
V. S. R.
, and
Mungal
,
M. G.
, 2004, “
The Turbulence Structure of Drag-Reduced Boundary Layer Flow
,”
Exp. Fluids
0723-4864,
36
, pp.
62
69
.
26.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S. G.
,
Lele
,
S. K.
, and
Moin
,
P.
, 2003, “
Numerical Simulation of High Drag Reduction Regime in Polymer Solutions
,”
4th ASME JSME Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45652.
27.
Udrea
,
D. D.
,
Bryanston-Cross
,
P. J.
,
Moroni
,
M.
, and
Querzoli
,
G.
, 2000, “
Particle Tracking Velocimetry Techniques
,”
Particle Image Velocimtery. Progress towards Industrial Application
,
Kluwer Academic
, Dordrecht, The Netherlands, pp.
279
304
.
You do not currently have access to this content.