A new method to predict traveling bubble cavitation inception is devised. The crux of the method consists in combining the enhanced predictive capabilities of large-eddy-simulation (LES) for flow computation with a simple but carefully designed stability criterion for the cavitation nuclei. For LES a second-order accurate finite element model based on the Galerkin/least-squares method with Runge-Kutta time integration is applied. The incoming nucleus’ spectrum is approximated by a Weibull distribution. Moreover, it is shown that under typical conditions the stability of the nuclei can be evaluated with an algebraic criterion emerging from the Rayleigh-Plesset equation. This criterion can be expressed as modified critical Thoma number and fits well into the LES approach. The method was applied to study cavitation inception in a flow past a square cylinder. A good agreement with experimental results was achieved. Furthermore, the principal advantage over statistical (time-averaged) methods could be clearly demonstrated, even though the spatial resolution and application of the LES were restricted by limited computational resources. As the latter keep on growing, a wider range of applications will become accessible methods for cavitation prediction based on algebraic stability criteria combined with LES.

1.
Rood
,
E.
, 1991, “
Review—Mechanism of Cavitation Inception
,”
J. Fluids Eng.
0098-2202,
113
, pp.
163
175
.
2.
Plesset
,
M.
, 1949, “
The Dynamics of Cavitation Bubbles
,”
J. Appl. Mech.
0021-8936,
16
, pp.
277
287
.
3.
Isay
,
W.
, 1989,
Kavitation
,
Schiffahrts-Verlag Hansa
, Hamburg.
4.
Hsiao
,
C-T.
, and
Pauley
,
L.
, 1999, “
Study of Tip Vortex Cavitation Inception Using Navier-Stokes Computation and Bubble Dynamic Model
,”
J. Fluids Eng.
0098-2202,
121
, pp.
198
204
.
5.
Wilcox
,
D.
, 1993,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada (CA)
.
6.
Lesieur
,
M.
, 1998, “
Vorticity and Pressure Distributions in Numerical Simulations of Turbulent Shear Flow
,”
Proceedings of the Third International Symposium on Cavitation
,
Grenoble
,
France
,
1
, pp.
9
18
.
7.
Tennekes
,
H.
, and
Lumley
,
J.
, 1972,
A First Course in Turbulence
,
MIT Press
,
Cambridge
.
8.
Sagaut
,
P.
, 2001,
Large Eddy Simulation for Inkompressible Flows—An Introduction
,
Springer-Verlag
,
Berlin
.
9.
Piomelli
,
U.
, 1999, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
0376-0421,
35
, pp.
335
362
.
10.
Kodama
,
Y.
,
Take
,
N.
,
Tamiya
,
S.
, and
Kato
,
H.
, 1981, “
The Effects of Nuclei on the Inception of Bubble and Sheet Cavitation on Axisymmetric Bodies
,”
J. Fluids Eng.
0098-2202,
103
, pp.
557
563
.
11.
Meyer
,
R. S.
,
Billet
,
M.
, and
Holl
,
J.
, 1992, “
Freestream Nuclei and Traveling Bubble Cavitation
,”
J. Fluids Eng.
0098-2202,
114
(
4
), pp.
672
679
.
12.
Clift
,
R.
, and
Grace
,
J.
, 1978,
Bubbles, Drops and Particles
,
Academic Press
,
New York
.
13.
Crowe
,
C.
,
Troutt
,
T.
, and
Chung
,
J.
, 1995, “
Particle Interactions with Vortices
,”
Fluid Vortices
,
S.
Green
, ed.,
Kluwer Academic Press
,
Dordrecht
.
14.
Prandtl
,
L.
,
Oswatitsch
,
K.
, and
Wieghardt
,
K.
, 1989,
Führer durch die Strömungslehre
,
9th edt.
Vieweg
,
Braunschweig
.
15.
Tang
,
L.
,
Wen
,
F.
,
Yang
,
Y.
,
Crowe
,
C.
,
Chung
,
J.
, and
Troutt
,
T.
, 1992, “
Self-Organizing Particle Dispersion Mechanism in a Plane Wake
,”
Phys. Fluids A
0899-8213,
4
(
10
), pp.
2244
2251
.
16.
Shima
,
A.
, 1970, “
The Natural Frequency of a Bubble Oscillating in a Viscous Compressible Liquid
,”
J. Basic Eng.
0021-9223,
55
, pp.
555
562
.
17.
Farabee
,
T.
, and
Casarella
,
M.
, 1991, “
Spectral Features of Wall Pressure Fluctuations Beneath a Turbulent Boundary Layers
,”
Phys. Fluids A
0899-8213,
3
(
10
), pp.
2410
2420
.
18.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York, Oxford
.
19.
Epstein
,
P.
, and
Plesser
,
M.
, 1950, “
On the Stability of Gas Bubbles in Liquid-Gas Solutions
,”
J. Chem. Phys.
0021-9606,
18
(
11
), pp.
1505
1509
.
20.
Keller
,
A.
, 1973, “
Experimentelle und Theoretische Untersuchung zum Problem der Modellmäßigen Behandlung von Strömungskavitation
,” Versuchsanstalt für Wasserbau Oskar von Miller, Obernach/München.
21.
Moin
,
P.
,
Squires
,
W.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
(
11
), pp.
2746
2757
.
22.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments with the Primitive Equations
,”
Mon. Weather Rev.
0027-0644,
91
(
3
), pp.
99
152
.
23.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
, 1995, “
Subgrid-modelling in LES of Compressible Flow
,”
Appl. Sci. Res.
0003-6994,
54
, pp.
191
203
.
24.
Helduser
,
S.
, and
Rüdiger
,
F.
, 2003, “
Zwischenbericht zur Sachbeihilfe HE 2715/1-2
,” Technischer Bericht, Institut für Fluidtechnik, TU Dresden.
25.
Hughes
,
T.
, and
Mallet
,
M.
, 1986, “
A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
305
328
.
26.
Shakib
,
F.
,
Hughes
,
T. J. R.
, and
Zdenek
,
J.
, 1991, “
A New Finite Element Formulation for Computational Fluid Dynamics: X. The compressible Euler and Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
141
219
.
27.
Jansen
,
K.
,
Collis
,
S. S.
,
Whiting
,
C.
, and
Shakib
,
F.
, 1999, “
A Better Consistency Method for Low-Order Stabilized Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
174
, pp.
153
170
.
28.
Hauke
,
G.
, and
Hughes
,
T.
, 1994, “
A Unified Approach to Compressible and Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
113
, pp.
389
395
.
29.
Jansen
,
K.
, 1999, “
A Stabilized Finite-Element-Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
174
, pp.
299
317
.
30.
Stiller
,
J.
,
Nagel
,
W.
, and
Fladrich
,
U.
, 1999, “
Scalability of Parallel Multigrid Adaption
,”
Multigrid Methods VI
,
Dick
et al.
, eds.,
Springer-Verlag
, Berlin, pp.
228
234
.
31.
Stiller
,
J.
, and
Nagel
,
W. E.
, 1999, “
MG—A Toolbox for Parallel Grid Adaption and Implementing Unstructured Multigrid Solvers
,”
Parallel Computing, Fundamentals and Applications 2000
,
E. H.
D'Hollander
et al.
, eds.,
Imperial College Press
, pp.
391
399
.
32.
Wienken
,
W.
,
Stiller
,
J.
, and
Fladrich
,
U.
, 2002, “
A Finite-Element Based Navier-Stokes Solver for LES
,”
Parallel CFD 2002, Parallel Computational Fluid Dynamics-New Frontiers and Multi-Disciplinary Applications
,
K.
Matsuno
,
A.
Ecer
,
J.
Periaux
,
N.
Satofuka
, and
P.
Fox
, eds.,
Elsevier Publishing Co.
, pp.
361
368
.
33.
Stiller
,
J.
,
Wienken
,
W.
,
Fladrich
,
U.
,
Grundmann
,
R.
, and
Nagel
,
W. E.
, 2004, “
Parallel and Adaptive Finite Element Techniques for Flow Simulation
,”
New Results in Numerical and Experimental Fluid Mechanics IV
,
C.
Breitsamter
et al.
, eds.,
Springer-Verlag
, pp.
366
373
.
34.
Wienken
,
W.
, 2002,
Die Large-Eddy-Simulation mittels der Finite-Elemente-Methode zur Bestimmung des Kavitationsbeginns
,
VDI-Fortschrittsberichte
, Reihe 7 Nr. 453, VDI-Verlag, Düsseldorf.
35.
Kim
,
J.
,
Moin
,
M.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
36.
Rodi
,
W.
, 1998, “
Large-Eddy Simulations of the Flow past Bluff Bodies: State-of-the-Art
,”
JSME Int. J.
0913-185X,
41
(
2
), pp.
361
374
.
37.
Voke
,
P.
, 1997, “
Flow Past a Square Cylinder: Test Case LES2
,”
Direct and Large Eddy Simulation II
,
J.
Challet
,
P.
Voke
, and
L.
Kouser
, eds.,
Kluwer Academic
, Dordrecht.
You do not currently have access to this content.