Abstract

Microscopic particle image velocimetry (microPIV) was used to measure velocities in rectangular microchannels with aspect ratios ranging from 0.97 to 5.69 for 200<Re<3267. Mean velocity profiles, velocity fluctuations, and Reynolds stresses were determined from the microPIV data. Transition to turbulence was observed at Re=1765-2315 for the five aspect ratios studied, agreeing very well with both recent microscale experiments and macroscale duct flow and indicating no evidence of early transition for any of the aspect ratios studied. The onset of fully turbulent flow was observed at Re=2600-3200. For the fully turbulent flow, the uumax and vumax fluctuations at the channel centerline were 6% and 3%–3.5% and generally agreed well with macroscale results. As aspect ratio increased, the uumax and uumax profiles became flatter, with nearly uniform values extending for some distance from the centerline of the channel. This region of uniform uumax and uumax became larger with increasing aspect ratio. The Reynolds shear stress for fully turbulent flow also displayed a strong dependence on aspect ratio. For the WH=0.97 microchannel, uvumax2 steadily increased in value moving from the centerline to the wall, but for the higher aspect ratio microchannels, uvumax2 remained close to zero in the center region of the microchannel before increasing in value at locations close to the wall, and this region of near zero uvumax2 became larger with increasing aspect ratio. This behavior in the Reynolds shear stress is due to the region of uniform velocity and, hence, small mean shear, near the channel centerline of the high aspect ratio microchannels.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
2.
Henning
,
A. K.
, 1998, “
Microfluidic MEMS
,” in
IEEE Aerospace Conference
, p.
4.906
, Snowmass, CO, March.
3.
Lipman
,
J.
, 1999, “
Microfluidics Puts Big Labs on Small Chips
,”
EDN Mag.
, pp.
79
86
, December.
4.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Fluid Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2599
2608
.
5.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Forced Convection Heat Transfer of Single-Phase Binary Mixtures Through Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
98
104
.
6.
Mo
,
H. L.
,
Zhou
,
Y. X.
,
Zhu
,
T. Y.
, and
Guo
,
T. W.
, 2004, “
Forced Convection of Low Temperature Nitrogen Gas in Rectangular Channels With Small Aspect Ratio
,”
Cryogenics
0011-2275,
44
, pp.
301
307
.
7.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
, 2000, “
Pressure Drop Measurements in a Microchannel
,”
Fluid Mech. Transp. Phenom.
,
46
(
8
), pp.
1496
1507
.
8.
Wu
,
P. Y.
, and
Little
,
W. A.
, 1983, “
Measurement of Friction Factor for Flow of Gases in Very Fine Channels Used for Micro-Miniature Joule-Thompson Refrigerators
,”
Cryogenics
0011-2275,
23
, pp.
273
277
.
9.
Wu
,
P. Y.
, and
Little
,
W. A.
, 1984, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
0011-2275,
24
, pp.
415
420
.
10.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
353
364
.
11.
Guo
,
Z. Y.
, and
Li
,
Z. X.
, 2003, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
149
159
.
12.
Guo
,
Z. Y.
, and
Li
,
Z. X.
, 2003, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
284
298
.
13.
Sabry
,
M. N.
, 2000, “
Scale Effects on Fluid Flow and Heat Transfer in Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
3
), pp.
562
567
.
14.
Toh
,
K. C.
,
Chen
,
X. Y.
, and
Chai
,
J. C.
, 2002, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
5133
5141
.
15.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
765
773
.
16.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
568
579
.
17.
Chen
,
C. S.
, and
Kuo
,
W. J.
, 2004, “
Numerical Study of Compressible Turbulent Flow in Microtubes
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
85
99
.
18.
Hegab
,
H. E.
,
Bari
,
A.
, and
Ameel
,
T.
, 2002, “
Friction and Convection Studies of R-134a in Microchannels Within the Transition and Turbulent Flow Regimes
,”
Exp. Heat Transfer
0891-6152,
15
, pp.
245
259
.
19.
Hegab
,
H. E.
,
Bari
,
A.
, and
Ameel
,
T. A.
, 2001, “
Experimental Investigation of Flow and Heat Transfer Characteristics of R-134a in Microchannels
,”
Proc. SPIE
0277-786X,
4560
, pp.
117
125
.
20.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2519
2525
.
21.
Baviere
,
R.
,
Ayela
,
F.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2004, “
An Experimental Study of Water Flow in Smooth and Rough Rectangular Microchannels
,” in
Second International Conference on Microchannels and Minichannels (ICMM2004)
,
Rochester
,
New York
, June, pp.
221
228
.
22.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
0723-4864,
25
, pp.
316
319
.
23.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, 1999, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
0723-4864,
27
, pp.
414
419
.
24.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Gray
,
M. H. B.
, 2000, “
Volume Illumination for Two-Dimensional Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
11
(
6
), pp.
809
814
.
25.
Olsen
,
M. G.
, and
Adrian
,
R. J.
, 2000, “
Out-of-Focus Effects on Particle Image Visibility and Correlation in Microscopic Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
, pp.
S166
S174
.
26.
Olsen
,
M. G.
, and
Adrian
,
R. J.
, 2000, “
Brownian Motion and Correlation in Particle Image Velocimetry
,”
Opt. Laser Technol.
0030-3992,
32
, pp.
621
627
.
27.
Devasenathipathy
,
S.
,
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
, and
Takehara
,
K.
, 2003, “
Particle Imaging Techniques for Microfabricated Fluidic Systems
,”
Exp. Fluids
0723-4864,
34
, pp.
504
514
.
28.
Stone
,
S. W.
,
Meinhart
,
C. D.
, and
Wereley
,
S. T.
, 2002, “
A Microfluidic-Based Nanoscope
,”
Exp. Fluids
0723-4864,
33
, pp.
613
619
.
29.
Klank
,
H.
,
Goranovic
,
G.
,
Kutter
,
J. P.
,
Gjelstrup
,
H.
,
Michelsen
,
J.
, and
Westergaard
,
C. H.
, 2002, “
PIV Measurements in a Microfluidic 3d-Sheathing Structure With Three-Dimensional Flow Behaviour
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
862
869
.
30.
Kim
,
M. J.
,
Beskok
,
A.
, and
Kihm
,
K. D.
, 2002, “
Electro-Osmosis-Driven Microchannel Flows: A Comparative Study of Microscopic Particle Image Velocimetry Measurements and Numerical Simulations
,”
Exp. Fluids
0723-4864,
33
, pp.
170
180
.
31.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
, 2002, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4809
4822
.
32.
Zeighami
,
R.
,
Laser
,
D.
,
Zhou
,
P.
,
Asheghi
,
M.
,
Devasenathipathy
,
S.
,
Kenny
,
T.
,
Santiago
,
J.
, and
Goodson
,
K.
, 2000, “
Experimental Investigation of Flow Transition in Microchannels Using Micron-Resolution Particle Image Velocimetry
,” in
Thermomechanical Phenomena in Electronic Systems Proceedings of the Intersociety Conference
, Vol.
2
, pp.
148
153
.
33.
Lee
,
S. Y.
,
Wereley
,
S. T.
,
Gui
,
L.
,
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Microchannel Flow Measurement Using Micro Particle Image Velocimetry
,” in
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED
, Vol.
258
, pp.
493
500
.
34.
Sharp
,
K. V.
, and
Adrian
,
R. J.
, 2004, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
0723-4864,
36
, pp.
741
747
.
35.
Li
,
H.
,
Ewoldt
,
R.
, and
Olsen
,
M. G.
, 2005, “
Turbulent and Transitional Velocity Measurements in a Rectangular Microchannel Using Microscopic Particle Image Velocimetry
,”
Exp. Therm. Fluid Sci.
0894-1777,
29
, pp.
435
446
.
36.
Li
,
H.
, and
Olsen
,
M.
, 2006, “
MicroPIV Measurements of Turbulent Flow in Square Microchannels With Hydraulic Diameters From 200μmto640μm
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
123
134
.
37.
Anderson
,
J. R.
,
Chiu
,
D. T.
,
Jackman
,
R. J.
,
Chemiavskaya
,
O.
,
McDonald
,
J. C.
,
Wu
,
H.
,
Whitesides
,
S. H.
, and
Whitesides
,
G. M.
, 2000, “
Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping
,”
Anal. Chem.
0003-2700,
72
, pp.
3158
3164
.
38.
Jo
,
B. H.
,
Van Lerverghe
,
L. M.
,
Motsegood
,
K. M.
, and
Beebe
,
D. J.
, 2000, “
Three-Dimensional Microchannel Fabrication in Polydimethylsiloxane (PDMS) Elastomer
,”
J. Microelectromech. Syst.
1057-7157,
9
, pp.
76
81
.
39.
Bourdon
,
C. J.
,
Olsen
,
M. G.
, and
Gorby
,
A. D.
, 2004, “
Validation of Analytical Solution of Depth of Correlation in Microscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
318
327
.
40.
Adrian
,
R. J.
, and
Yao
,
C. S.
, 1983, “
Pulsed Laser Technique Application to Liquid and Gaseous Flows and the Scattering Power of Seed Material
,”
Appl. Opt.
0003-6935,
24
, pp.
42
52
.
41.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
42.
White
,
F. M.
, 1991,
Viscous Fluid Flow (2nd ed.)
,
McGraw-Hill
,
New York
.
43.
Wygnanski
,
I. J.
, and
Champagne
,
F. H.
, 1973, “
On Transition in a Pipe; Part 1. The Origin of Puffs and Slugs and the Flow in a Turbulent Slug
,”
J. Fluid Mech.
0022-1120,
59
, pp.
281
335
.
44.
Schlichting
,
H.
,
Boundary-Layer Theory (7th ed.)
,
McGraw-Hill
,
New York
.
45.
Tracy
,
H. J.
, 1965, “
Turbulent Flow in a Three-Dimensional Channel
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
0044-796X,
91
, pp.
9
35
.
You do not currently have access to this content.