An algorithm based on the combination of time-derivative preconditioning strategies with low-diffusion upwinding methods is developed and applied to multiphase, compressible flows characteristic of underwater projectile motion. Multiphase compressible flows are assumed to be in kinematic and thermodynamic equilibrium and are modeled using a homogeneous mixture formulation. Compressibility effects in liquid-phase water are modeled using a temperature-adjusted Tait equation, and gaseous phases (water vapor and air) are treated as an ideal gas. The algorithm is applied to subsonic and supersonic projectiles in water, general multiphase shock tubes, and a high-speed water entry problem. Low-speed solutions are presented and compared to experimental results for validation. Solutions for high-subsonic and transonic projectile flows are compared to experimental imaging results and theoretical results. Results are also presented for several multiphase shock tube calculations. Finally, calculations are presented for a high-speed axisymmetric supercavitating projectile during the important water entry phase of flight.

1.
Ishii
,
M.
, 1975,
Thermo-Fluid-Dynamic Theory of Two-Phase Flow
,
Eyrolles
, Paris.
2.
Stewart
,
H. B.
, and
Wendroff
,
B.
, 1984, “
Two-Phase Flow: Models and Methods
,”
J. Comput. Phys.
0021-9991,
56
, pp.
363
409
.
3.
Tuomi
,
I.
,
Kumbaro
,
A.
, and
Paillere
,
H.
, 1999, “
Approximate Riemann Solvers and Flux Vector Splitting Schemes for Two-Phase Flow
,”
Lecture series 1999-03
, von Karman Institute for Fluid Dynamics.
4.
Abgrall
,
R.
, and
Kami
,
S.
, 2001, “
Computation of Compressible Multifluids
,”
J. Comput. Phys.
0021-9991,
169
, pp.
594
623
.
5.
Saurel
,
R.
, and
Abgrall
,
R.
, 1999, “
A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows
,”
J. Comput. Phys.
0021-9991,
150
, pp.
425
467
.
6.
Abgrall
,
R.
, 1996, “
How to Prevent Pressure Oscillations in Multicomponent Flow Calculations: A Quasi Conservative Approach
,”
J. Comput. Phys.
0021-9991,
125
, pp.
150
160
.
7.
Saurel
,
R.
,
Cocchi
,
J. P.
, and
Butler
,
P. B.
, 1999, “
Numerical Study of Cavitation in the Wake of a Hypervelocity Underwater Projectile
,”
J. Propul. Power
0748-4658,
l5
(
4
), pp.
513
522
.
8.
Edwards
,
J. R.
,
Franklin
,
R. K
, and
Liou
,
M.-S.
, 2000, “
Low-Diffusion Flux-Splitting Methods for Real Fluid Flows With Phase Transitions
,”
AIAA J.
0001-1452,
38
(
9
), pp.
1624
l634
.
9.
Venkateswaran
,
S.
,
Lindau
,
J. W.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
, 2001, “
Preconditioning Algorithms for the Computation of Multi-Phase Mixture Flows
,” AIAA Paper No. 2001-0279.
10.
Lindau
,
J. W.
,
Venkateswaran
,
S.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
, 2001, “
Development of a Fully-Compressible Multi-Phase Reynolds-Averaged Navier-Stokes Model
,” AIAA Paper No. 2001-2648.
11.
Weiss
,
J. M.
, and
Smith
,
W. A.
, 1994, “
Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes
,” AIAA Paper No. 94-2209.
12.
Turkel
,
E.
, 1987, “
Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations
,”
J. Comput. Phys.
0021-9991,
72
, pp.
277
298
.
13.
Choi
,
Y. H.
, and
Merkle
,
C. L.
, 1993, “
The Application of Preconditioning in Viscous Flows
,”
J. Comput. Phys.
0021-9991,
105
, pp.
207
223
.
14.
Edwards
,
J. R.
, 1997, “
A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations
,”
Comput. Fluids
0045-7930,
26
(
6
), pp.
635
659
.
15.
Edwards
,
J. R.
, 2001, “
Towards Unified CFD Simulations of Real Fluid Flows
,” AIAA Paper No. 2001-2524.
16.
Liou
,
M. S.
, 1995, “
Progress Toward an Improved CFD Method: AUSM+,
” AIAA Paper No. 1995-1701.
17.
Liou
,
M. S.
, 2001, “
Ten Years in the Making - AUSM Family
,” AIAA Paper No. 2001-2521.
18.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
19.
Edwards
,
J. R.
, and
Chandra
,
S.
, 1994, “
Comparison of Eddy Viscosity - Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields
,” AIAA Paper No. 94-2275.
20.
Cole
,
R. H.
, 1948,
Underwater Explosions
,
Princeton University Press
, Princeton, NJ, pp.
38
39
.
21.
Oldenbourg
,
R.
, 1989,
Properties of Water and Steam in SI-Units
,
Springer-Verlag
, Berlin.
22.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
, 1993, “
Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species
,” NASA Technical Memorandum 4513.
23.
Courant
,
R.
,
Friedrichs
,
K. O.
, and
Lewy
,
H.
, 1967, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
0018-8646,
11
, pp.
215
234
.
24.
Rai
,
M. M.
, 1987, “
Navier-Stokes Simulations of Blade-Vortex Interaction Using High-Order Accurate Upwind Schemes
,” AIAA Paper No. 87-0543.
25.
Pulliam
,
T. H.
, 1993, “
Time Accuracy and the Use of Implicit Methods
,” AIAA Paper No. 93-3360.
26.
Rouse
,
H.
, and
McNown
,
J. S.
, 1948, “
Cavitation and Pressure Distribution: Head Forms at Zero Angle of Yaw
,” State University of Iowa Engineering Bulletin 32, Ames, IA.
27.
Hrubes
,
J. D.
, 2001, “
High-Speed Imaging of Supercavitating Underwater Projectiles
,”
Exp. Fluids
0723-4864,
30
, pp.
57
64
.
28.
Grady
,
R. J.
, 1979,
Hydroballistics Design Handbook
, Vol
I
, Naval Sea Systems Command, Technical Report No. SEAHAC/79-1, pp.
38
45
.
29.
Neaves
,
M. D.
, and
Edwards
,
J. R.
, 2004, “
Time-Accurate Calculations of Axisymmetric Water Entry for a Supercavitating Projectile
,” AIAA Paper No. 2004-2643.
You do not currently have access to this content.