We perform molecular dynamics (MD) simulations (based on the soft-sphere model) of a model dry granular system consisting of two types of spherical particles differing in size and/or density to characterize particle-particle momentum transfer (solid drag). The velocity difference between two types of particles is specified in the initial conditions, and the evolution of relative mean velocity and the velocity fluctuations in terms of granular temperature are quantified. The dependence of the momentum transfer is studied as a function of volume fraction, size and density ratio of the two types of particles, inelasticity, and friction coefficient. An existing continuum model of particle-particle momentum transfer is compared to the MD simulations. A modified continuum solid drag model is suggested for a limited range of parameters.

1.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979. “
Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
, pp.
47
64
.
2.
Walton
,
O. R.
, and
Braun
,
R. L.
, 1986. “
Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
0148-6055,
30
, p.
949
.
3.
Silbert
,
L. E.
,
Ertas
,
D.
,
Grest
,
G. S.
,
et al.
, 2001,“
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
1063-651X,
64
, p.
051302
.
4.
Volfson
,
D.
,
Tsimring
,
L. S.
, and
Aranson
,
I. S.
, 2003, “
Partially Fluidized Shear Granular Flows: MD Simulations and Continuum Theory
,”
Phys. Rev. E
1063-651X,
68
, p.
021301
.
5.
Landry
,
J. W.
,
Grest
,
G. S.
,
Silbert
,
L. E.
, and
Plimpton
,
S. J.
, 2003, “
Confined Granular Packings: Structure, Stress, and Forces
,”
Phys. Rev. E
1063-651X,
67
, p.
041303
.
6.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T. J.
, 1993, “
MFIX Documentation: Theory Guide
,” Tech. Rep. DOE/METC-94/1004,
Morgantown Energy Technology Center of U.S. Department of Energy
, Morgantown, WV.
7.
Goldhirsch
,
I.
, 2003. “
Rapid Granular Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
267
293
.
8.
Vincenti
,
W. G.
, and
Kruger
, Jr.,
C. H.
, 1965,
Introduction to Physics Gas Dynamics
,
John Wiley and Sons, Inc.
,
New York
.
9.
Gao
,
D.
,
Subramaniam
,
S.
,
Fox
,
R. O.
, and
Hoffman
,
D.
, 2005, “
Objective Decomposition of the Stress Tensor in Granular Mixtures
,”
Phys. Rev. E
1063-651X,
71
, p.
021302
.
10.
Clelland
,
R.
, and
Herenya
,
C. M.
, 2002, “
Simulations of a Binary-Sized Mixture of Inelastic Grains in Rapid Shear Flow
,”
Phys. Rev. E
1063-651X,
65
(
3
), p.
031301
.
11.
Alam
,
M.
, and
Luding
,
S.
, 2003, “
Rheology of Bidisperse Granular Mixtures via Event-Driven Simulations
,”
J. Fluid Mech.
0022-1120,
476
(
10
), pp.
69
103
.
12.
Syamlal
,
M.
, 1987, “
The Particle-Particle Drag Term in a Multiparticle Model of Fluidization
,” Tech. Rep. DOE/MC/21353-2373,
Morgantown Energy Technology Center of U.S. Department of Energy
, Morgantown, WV.
13.
Lebowitz
,
J. L.
, 1964, “
Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres
,”
Phys. Rev.
0096-8250,
133
, pp.
A895
A899
.
14.
Walton
,
O. R.
, 1992, “
Numerical Simulation of Inelastic, Frictional Particle-Particle Interaction
,” in
Particulate Two-phase Flow
,
M. C.
Roco
, ed.,
Butterworth-Heinemann
,
London
, pp.
1249
1253
.
15.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
0021-9991,
117
, pp.
1
19
.
16.
Rapaport
,
D. C.
, 1995,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge
.
17.
Mansoori
,
G. A.
,
Garnahan
,
N. F.
,
Starling
,
K. E.
, and
Leland
, Jr.,
T. W.
, 1971. “
Equilibrium Thermodynamics Properties of the Mixture of Hard Spheres
,”
J. Chem. Phys.
0021-9606,
54
(
4
), pp.
1523
1525
.
18.
Huilin
,
L.
,
Gidaspow
,
D.
, and
Manger
,
E.
, 2001, “
Kinetic Theory of Fluidized Binary Granular Mixtures
,”
Phys. Rev. E
1063-651X,
64
, p.
061301
.
19.
Stoyan
,
D.
, and
Stoyan
,
H.
, 1994,
Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics
,
Wiley, Inc.
,
New York
.
20.
Gao
,
D.
,
Morley
,
N. B.
, and
Dhir
,
V.
, 2003, “
Numerical Simulation of Wavy Falling Film Flows Using VOF Method
,”
J. Comput. Phys.
0021-9991,
192
(
10
), pp.
624
642
.
You do not currently have access to this content.