We computed the flow of four gases (He, N2, CO2, and SF6) through a critical flow venturi (CFV) by augmenting traditional computational fluid dynamics (CFD) with a rate equation that accounts for τrelax, a species-dependent relaxation time that characterizes the equilibration of the vibrational degrees of freedom with the translational and rotational degrees of freedom. Conventional CFD (τrelax=0) underpredicts the flow through small CFVs (throat diameter d=0.593mm) by up to 2.3% for CO2 and by up to 1.2% for SF6. When we used values of τrelax from the acoustics literature, the augmented CFD underpredicted the flow for SF6 by only 0.3%, in the worst case. The augmented predictions for CO2 were within the scatter of previously published experimental data (±0.1%). As expected, both conventional and augmented CFD agree with experiments for He and N2. Thus, augmented CFD enables one to calibrate a small CFV with one gas (e.g., N2) and to use these results as a flow standard with other gases (e.g., CO2) for which reliable values of τrelax and the relaxing heat capacity are available.

1.
Wright
,
J. D.
, 1998, “
The Long Term Calibration Stability of Critical Flow Nozzles and Laminar Flowmeters
,”
NCSL Conference Proceedings
, Albuquerque, NM, pp.
443
462
.
2.
Wright
,
P. H.
, 1985, “
The Application of Sonic Nozzles to the Automated Accuracy Testing of Gas Flow Meters
,”
Proc. International Conference on Flow Measurement
, Australia, pp.
152
156
.
3.
Nakao
,
S.
,
Hirayama
,
T.
, and
Takamoto
,
M.
, 1997, “
Effects of Thermalphysical Properties of Gases on the Discharge Coefficients of the Sonic Venturi Nozzle
,”
Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting
, Vancouver, British Columbia, Canada, June 22–26.
4.
Hall
,
I. M.
, 1962, “
Transonic Flow in Two-Dimensional and Axially-Symmetric Nozzles
,”
Q. J. Mech. Appl. Math.
0033-5614,
XV
, Pt. 4, pp.
487
508
.
5.
Smith
,
R. E.
, and
Matz
,
R. J.
, 1962, “
A Theoretical Method of Determining Discharge Coefficients for Venturis Operating at Critical Flow Conditions
,”
J. Basic Eng.
0021-9223,
19
, pp.
434
446
.
6.
Tang
,
S. P.
, 1969, “
Theoretical Dependence of the Discharge Coefficients of Axisymmetric Nozzles Under Critical Flows
,” Technical Report PR-118-PU, Department of Mechanical Engineering,
Princeton Univ.
, Princeton, NJ.
7.
Tang
,
S.
, 1969, “
Discharge Coefficients for Critical Flow Nozzles and Their Dependence on Reynolds Numbers
,” Ph.D. thesis, Princeton Univ., Princeton, NJ.
8.
Geropp
,
D.
, 1971, “
Laminare Grenzschichten In Ebenen Und Rotationssymmetrischen Lavalduesen
,” Deutsche Luft-Und Raumfart, Forschungsbericht, pp.
71
90
.
9.
Johnson
,
A. N.
,
Espina
,
P. I.
,
Mattingly
,
G. E.
,
Wright
,
J. D.
, and
Merkle
,
C. L.
, 1998, “
Numerical Characterization of the Discharge Coefficient in Critical Nozzles
,”
Proceedings of the 1998 NCSL Workshop Symposium
, Albuquerque, NM.
10.
Johnson
,
A. N.
,
Wright
,
J. D.
,
Nakao
,
S.
,
Merkle
,
C. L.
, and
Moldover
,
M. R.
, 2000, “
The Effect of Vibrational Relaxation on the Discharge Coefficient of Critical Flow Venturis
,”
Flow Meas. Instrum.
0955-5986,
11
, pp.
315
327
.
11.
Johnson
,
A. N.
, 2000, “
Numerical Characterization of the Discharge Coefficient in Critical Nozzles
,” Ph.D. thesis, The Pennsylvania State University, University Park, PA.
12.
ISO 9300: (E)., 1990, “
Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles
,” Geneva Switzerland.
13.
Bhatia
,
A. B.
, 1967,
Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids
,
Oxford University Press, Inc.
, London.
14.
O’Connor
,
L. C.
, 1954, “
Thermal Relaxation of Vibrational States in Sulfur Hexafluoride
,”
J. Acoust. Soc. Am.
0001-4966,
2
(
3
), pp.
361
364
.
15.
Estrada-Alexanders
,
A. F.
, and
Trusler
,
J. P. M.
, 1999, “
Speed of Sound in Carbon Dioxide at Temperatures between (200 and 450) K and Pressures up to 14 MPa
,”
J. Chem. Thermodyn.
0021-9614,
31
(
5
), pp.
1589
1601
.
16.
Breshears
,
W. D.
, and
Blair
,
L. S.
, 1973, “
Vibrational Relaxation in Polyatomic Molecules: SF6
,”
J. Chem. Phys.
0021-9606,
59
(
11
), pp.
5824
5827
.
17.
John
,
J. E.
, 1984,
Gas Dynamics
,
2nd ed.
,
Allyn and Bacon, Inc.
, Boston.
18.
Anderson
,
J. D.
, Jr.
, 1982,
Modern Compressible Flow with a Historical Perspective
,
McGraw-Hill, Inc.
, New York.
19.
Shapiro
,
A. H.
, 1954,
The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. II
,
The Ronald Press Co.
, New York.
20.
Johnson
,
R. C.
, 1963, “
Calculation of Real-Gas Effects in Flow Through Critical-Flow-Nozzles
,” ASME paper no. 63-WA-71.
21.
Johnson
,
R. C.
, 1964, “
Calculations of Real-Gas Effects in Flow Through Critical Nozzles
,”
J. Basic Eng.
0021-9223,
1964
, p.
519
.
22.
Johnson
,
R. C.
, 1965, “
Real-Gas Effects in Critical-Flow-Through Nozzles and Tabulated Thermodynamic Properties
,” Nasa Technical Note D-2565, National Aeronautics and Space Administration, Washington, DC
23.
Johnson
,
R. C.
, 1968, “
Real-Gas Effects in Critical Flow Through Nozzles and Thermodynamic Properties of Nitrogen and Helium at Pressures to 300×105 Newtons Per Square Meter (Approx. 300 atm )
,” NASA Technical Note SP-3046, National Aeronautics and Space Administration, Washington, DC.
24.
Johnson
,
R. C.
, 1971, “
Real Gas Effects in Flowmetering
,”
Symposium on Flow
, ISA, Pittsburgh, PA.
25.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill Inc.
, New York.
26.
Hirsch
,
C.
, 1988,
Numerical Computation of Internal and External Flows: Volume 1, Fundamentals of Numerical Discretization
, John Wiley & Sons, Inc.,
New York
.
27.
Hirsch
,
C.
, 1990,
Numerical Computation of Internal and External Flows: Volume 2, Computational Methods for Inviscid and Viscous Flows
, John Wiley & Sons, Inc.,
New York
.
28.
Davis
,
D. F.
, and
Snider
,
A. D.
, 1991,
Introduction to Vector Analysis, Sixth Edition
,
Wm. C. Brown Publishers
, Dubuque, IA.
29.
Hilsenrath
,
J.
,
Beckett
,
C. W.
,
Benedict
,
W. S.
,
Fano
,
L.
,
Hoge
,
H. J.
,
Masi
,
J. F.
,
Nuttall
,
R. L.
,
Touloukian
,
Y. S.
, and
Wooley
,
H. W.
, 1955, “
Tables of Thermal Properties of Gases
,” U.S. Department of Commerce NBS Circular 564.
30.
McCarty
,
R. D.
, and
Arp
,
V. D.
, 1990, “
A New Wide Range Equation of State for Helium
,”
Adv. Cryog. Eng.
0065-2482,
35
, pp.
1465
1475
.
31.
Arp
,
V. D.
,
McCarty
,
R. D.
, and
Friend
,
D. G.
, 1998, “
Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa
,” NIST Technical Note 1334, Boulder, CO.
32.
Hands
,
B. A.
, and
Arp
,
V. D.
, 1981, “
A Correlation of Thermal Conductivity Data for Helium
,”
Cryogenics
0011-2275,
21
(
12
), pp.
697
703
.
33.
Lambert
,
J. D.
, 1977,
Vibrational and Rotational Relaxation in Gases
,
Oxford University Press
, Oxford.
34.
Kruger
,
C. H.
, and
Walter
,
G. V.
, 1965,
Introduction to Physical Gas Dynamics
,
John Wiley & Sons, Inc.
, New York.
35.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
, 1984,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere Publishing Corporation
, New York.
36.
Buelow
,
P.
,
Venkateswaran
,
S.
, and
Merkle
,
C. L.
, 1994, “
The Effect of Grid Aspect Ratio on Convergence
,”
AIAA J.
0001-1452,
32
, pp.
2401
2406
.
37.
Feng
,
J.
, and
Merkle
,
C. L.
, 1990, “
Evaluation of Preconditioning Methods for Time Marching Systems
,” AIAA paper no. 90-0016, AIAA 28th Aerospace Sciences Meeting, Reno, NV.
38.
Buelow
,
P. E. O.
, 1995, “
Convergence Enhancement of Euler and Navier-Stokes Algorithms
,” Ph.D. thesis, Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA.
39.
DuChateau
,
P.
, and
Zachmann
,
D.
, 1989, “
Applied Partial Differential Equations
,”
Harper and Row Publishers, Inc.
, New York.
40.
Edwards
,
C. H.
, and
Penny
,
D. E.
, 1989, “
Elementary Differential Equations With Boundary Value Problems
,”
Prentice-Hall, Inc.
, Englewood, NJ.
You do not currently have access to this content.