The transcritical cycle of carbon dioxide (CO2) is a promising alternative approach to heat pumps and automobile air conditioners. As an expansion device, the short tube orifice in a transcritical CO2 system usually receives supercritical fluid at the entrance and discharges a two-phase mixture at the exit. In this work, a two-fluid model (TFM) is developed for modeling the flow characteristics of supercritical CO2 through the short tube orifice. The deviations between the TFM predictions and the measured mass flow rates are within ±20%. Meanwhile, the TFM predicts reasonable pressure, temperature, and velocity distributions along the tube length. The small values of interphase temperature difference and velocity slip indicate that the nonequilibrium characteristics of the two-phase flow of CO2 in the short tube orifice are not significant. Consequently, the homogeneous equilibrium model reduced from the TFM gives a good prediction of the mass flow rate as well.

1.
Lorentzen
,
G.
, and
Pettersen
,
J.
, 1993, “
A New Efficient and Environmentally Benign System For Car Air-Conditioning
,”
Int. J. Refrig.
0140-7007,
16
, pp.
4
12
.
2.
Pettersen
,
J.
, and
Aarlien
,
R.
, 1998, “
Progress in CO2 Vapor Compression Systems
,”
Therm. Sci. Eng.
0918-9963,
6
, pp.
25
34
.
3.
Pettersen
,
J.
,
Hafner
,
A.
,
Skaugen
,
G.
, and
Rekstad
,
H.
, 1998, “
Development of Compact Heat Exchangers For CO2 Air-Conditioning Systems
,”
Int. J. Refrig.
0140-7007,
21
, pp.
180
193
.
4.
Brown
,
J. S.
,
Yana-Motta
,
S. F.
, and
Domanski
,
P. A.
, 2002, “
Comparative Analysis of an Automotive Air Conditioning System Operating with CO2 and R134a
,”
Int. J. Refrig.
0140-7007,
25
, pp.
19
32
.
5.
Thome
,
J. R.
, and
Hajal
,
J. E.
, 2004, “
Flow Boiling Heat Transfer to Carbon Dioxide: General Prediction Method
,”
Int. J. Refrig.
0140-7007,
27
, pp.
294
301
.
6.
Liu
,
J. P.
,
Niu
,
Y. M.
,
Chen
,
J. P.
,
Chen
,
Z. J.
, and
Feng
,
X.
, 2004, “
Experimentation and Correlation of R744 Two-Phase Flow Through Short Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
565
573
.
7.
Davies
,
D.
, and
Daniels
,
T. C.
, 1973, “
Single and Two-Phase Flow of Dichlorodifluoromethane (R-12) Through Sharp-Edged Orifice
,”
ASHRAE Trans.
0001-2505,
79
, pp.
109
123
.
8.
Mei
,
V. C.
, 1982, “
Short Tube Refrigerant Restrictions
,”
ASHRAE Trans.
0001-2505,
88
, pp.
157
169
.
9.
Aaron
,
D. A.
, and
Domanski
,
P. A.
, 1990, “
Experimentation Analysis and Correlation of Refrigerant-22 Flow Through Short Tube Restrictors
,”
ASHRAE Trans.
0001-2505,
96
, pp.
729
742
.
10.
Kim
,
Y.
, and
O’Neal
,
D. L.
, 1994, “
Two-Phase Flow of R-22 Through Short-Tube Orifices
,”
ASHRAE Trans.
0001-2505,
100
, pp.
323
334
.
11.
Bassiounay
,
R.
, and
O’Neal
,
D. L.
, 2004, “
Analysis of Refrigerant Flow and Deformation For a Flexible Short-Tube Using a Finite Element Model
,”
Int. J. Refrig.
0140-7007,
27
, pp.
176
183
.
12.
Kim
,
Y.
,
O’Neal
,
D. L.
, and
Yuan
,
X. L.
, 1994, “
Two-Phase Flow of HFC-134a and CFC-12 Through Short-Tube Orifices
,”
ASHRAE Trans.
0001-2505,
100
, pp.
582
591
.
13.
Kim
,
Y.
, and
O’Neal
,
D. L.
, 1995, “
A Comparison of Critical Flow Models For Estimating Two-Phase Flow HCFC22 and HFC134a Through Short-Tube Orifices
,”
Int. J. Refrig.
0140-7007,
18
, pp.
447
455
.
14.
Payne
,
V. W.
, and
O’Neal
,
D. L.
, 1998, “
Mass Flow Characteristic of R407C Through Short Tube Orifices
,”
ASHRAE Trans.
0001-2505,
104
, pp.
197
209
.
15.
Payne
,
W. V.
, and
O’Neal
,
D. L.
, 1999, “
Multiphase Flow of Refrigerant 410A Through Short Tube Orifices
,”
ASHRAE Trans.
0001-2505,
105
, pp.
66
74
.
16.
Singh
,
G. M.
,
Hrnjak
,
P. S.
, and
Bullard
,
C. W.
, 2001, “
Flow of Refrigerant 134a Through Short Tubes
,”
HVAC&R Res.
1078-9669,
7
, pp.
245
262
.
17.
Payne
,
V.
, and
O’Neal
,
D. L.
, 2004, “
A Mass Flow Rate Correlation For Refrigerants and Refrigerant Mixtures Flowing Through Short Tubes
,”
HVAC&R Res.
1078-9669,
10
, pp.
73
87
.
18.
Choi
,
J.
,
Chung
,
J. T.
, and
Kim
,
Y.
, 2004, “
A Generalized Correlation For Two-Phase Flow of Alternative Refrigerants Through Short Tube Orifices
,”
Int. J. Refrig.
0140-7007,
27
, pp.
393
400
.
19.
Richter
,
H. J.
, 1983, “
Separated Two-Phase Flow Model: Application to Critical Two-Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
9
, pp.
511
530
.
20.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
, New York.
21.
Martinelli
,
R. C.
, and
Nelson
,
D. B.
, 1948, “
Prediction of Pressure Drop During Forced Circulation Boiling of Water
,”
Trans. ASME
0097-6822,
70
, pp.
695
701
.
22.
Churchill
,
S. W.
, 1977, “
Frictional Equation Spans All Fluid Flow Regions
,”
Chem. Eng. (Rugby, U.K.)
0302-0797,
84
, pp.
91
92
.
23.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convection Boiling and Condensation
,
Oxford University Press
, New York.
24.
McLinden
,
M. O.
,
Klein
,
S. A.
,
Lemmon
,
E. W.
, and
Peskin
,
A. P.
, 1998,
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures (REFPROP), Version 6.01
, National Institute of Standards and Technology, Gaithersburg, MD.
25.
Heide
,
R.
, 1997, “
The Surface Tension of HFC Refrigerants and Mixtures
,”
Int. J. Refrig.
0140-7007,
20
, pp.
496
503
.
You do not currently have access to this content.