A practical combined computation method of the circumferentially averaged mean through-flow is presented for 3D inverse computations of hydraulic turbomachinery blades to consider the influence of interrelated hydraulic components. A comprehensive computation domain including the runner blades and related components is adopted and the mean flow is calculated altogether by solving a set of rotational flow governing equations simultaneously. The method has been applied to the case of Kaplan turbine. Computational results were compared to experimental data and their agreement was confirmed. Numerical investigation indicates that the mean flow is dependent on the configuration of guide vanes and the effect of runner blades reaches to the far upstream. The importance of properly taking account of the effect of blade geometry and the influence of interrelated hydraulic components is demonstrated.

1.
He
,
L.
, and
Sato
,
K.
, 2001, “
Numerical Solution of Incompressible Unsteady Flows in Turbomachinery
,”
ASME J. Fluids Eng.
0098-2202,
123
(
3
), pp.
680
685
.
2.
Muggli
,
F-A.
, and
Holbein
,
P.
, 2002, “
CFD Calculation of a Mixed Flow Pump Characteristic From Shutoff to Maximum Flow
,”
ASME J. Fluids Eng.
0098-2202,
124
(
3
), pp.
798
802
.
3.
Denton
,
J. D.
, 1992, “
The Calculation of Three Dimensional Viscous Flow through Multistage Trubomachines
,”
ASME J. Turbomach.
0889-504X,
114
(
1
), pp.
18
26
.
4.
He
,
L.
, and
Chen
,
T.
, 2002, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
564
571
.
5.
Shum
,
Y. K. P.
, and
Tan
,
C. S.
, 2000, “
Impeller-Diffuser Interaction in a Centrifugal Compressor
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
777
786
.
6.
Vu
,
T. C.
, and
Shyy
,
W.
, 1990, “
Viscous Flow Analysis as a Design Tool for Hydraulic Turbine Components
,”
ASME J. Fluids Eng.
0098-2202,
112
(
1
), pp.
5
11
.
7.
Lee
,
Y.-T.
,
Luo
,
L.
, and
Bein
,
T. W.
, 2001, “
Direct Method for Optimization of a Centrifugal Compressor Vaneless Diffuser
,”
ASME J. Turbomach.
0889-504X,
123
(
1
), pp.
73
79
.
8.
Sorensen
,
D. N.
,
Thompson
,
M. C.
, and
Sorensen
,
J. N.
, 2000, “
Toward Improved Rotor-Only Axial Fans-Part II: Design Optimization for Maximum Efficiency
,”
ASME J. Fluids Eng.
0098-2202,
122
(
2
), pp.
324
329
.
9.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Gad-el-Hak
,
M.
, 1998, “
New Approach to Constrained Shape Optimization Using Genetic Algorithms
,”
AIAA J.
0001-1452,
36
(
1
), pp.
51
61
.
10.
Madsen
,
J. I.
,
Shyy
,
W.
, and
Haftka
,
R. T.
, 2000, “
Response Surface Techniques for Diffuser Shape Optimization
,”
AIAA J.
0001-1452,
38
(
9
), pp.
1512
1518
.
11.
Papila
,
N.
,
Shyy
,
W.
,
Griffin
,
L. W.
, and
Dorney
,
D. J.
, 2001, “
Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods
,” AIAA Paper No. 2001-1065.
12.
Goto
,
A.
,
Nohmi
,
M.
,
Sakurai
,
T.
, and
Sogawa
,
Y.
, 2002, “
Hydrodynamic Design System of for Pumps Based on 3-D CAD, CFD, and Inverse Design Method
,”
ASME J. Fluids Eng.
0098-2202,
124
(
2
), pp.
329
335
.
13.
Jenkins
,
R. M.
, and
Moore
,
D. A.
, 1993, “
An inverse calculation technique for quasi-three-dimensional turbomachinery cascades
,”
Appl. Math. Comput.
0096-3003,
57
(
2
), pp.
197
204
.
14.
Zangeneh
,
M.
, 1994, “
Inviscid-viscous interaction method for three-dimensional inverse design of centrifugal impellers
,”
ASME J. Turbomach.
0889-504X,
116
(
2
), pp.
280
290
.
15.
Arndt
,
N.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
, 1990, “
Experimental Investigation of Rotor-Stator Interaction in a Centrifugal Pump with Several Vaned Diffusers
,”
ASME J. Turbomach.
0889-504X,
112
(
1
), pp.
98
108
.
16.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
, 2002, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
0098-2202,
124
(
2
), pp.
348
355
.
17.
Huyer
,
S. A.
, and
Snarski
,
S. R.
, 2003, “
Analysis of a Turbulent Propeller Inflow
,”
ASME J. Fluids Eng.
0098-2202,
125
(
3
), pp.
533
542
.
18.
Esch
,
B. P. M.
, and
Kruyt
,
N. P.
, 2001, “
Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models
,”
ASME J. Fluids Eng.
0098-2202,
123
(
2
), pp.
256
264
.
19.
Wu
,
C. H.
, 1952, “
A General Theory of Three-Dimensional Flow in Subsonic Turbomachines of Radial-, Axial-, and Mixed Flow Types
,” NACA TN-D 2604.
20.
Wang
,
Q. H.
,
Zhu
,
G. X.
, and
Wu
,
C. H.
, 1985, “
Quasi-Three Dimensional and Fully Three-Dimensional Rotational Flow Calculation in Turbomachines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
(
2
), pp.
227
285
.
21.
Zhao
,
X. L.
,
Sun
,
C. L.
, and
Wu
,
C. H.
, 1984, “
A Simple Method for Solving Three-dimensional Inverse Problem of Turbomachine Flow and Annular Constraint Condition
,” ASME paper No. 84-GT-198.
22.
Peng
,
G.
,
Fujikwa
,
S.
, and
Cao
,
S.
, 1998, “
An Advanced Quasi-Three-Dimensional Inverse Computation Model for Axial Flow Pump Impeller Design
,”
Proceedings of the XIX IAHR Symposium-Hydraulic Machinery and Cavitation
,
H.
Brekke
et al.
, eds.,
World Scientific
, Singapore, pp.
722
733
.
23.
Köller
,
U.
, and
Mönig
,
R.
, 2000, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part I: Design and Optimization
,”
ASME J. Turbomach.
0889-504X,
122
(
3
), pp.
397
405
.
24.
Peng
,
G.
,
Cao
,
S.
,
Ishizuka
,
M.
, and
Hayama
,
S.
, 2002, “
Design Optimization of Axial Flow Hydraulic Turbine Runner Part I: An Improved Q3D Inverse Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
(
6
), pp.
517
531
.
25.
Zangeneh
,
M.
, 1991, “
A Compressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
0271-2091,
13
(
7
), pp.
599
624
.
26.
Borges
,
J. E.
, 1994, “
A Three-Dimensional Inverse Method for Turbomachinery: Part-1 Theory
,”
ASME J. Turbomach.
0889-504X,
112
(
2
), pp.
346
354
.
27.
Tan
,
C. S.
,
Hawthorne
,
W. R.
,
McCune
,
J. E.
, and
Wang
,
C.
, 1984, “
Theory of Blade Design for Large Deflection: Part II- Annular Cascades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
2
), pp.
354
365
.
28.
Peng
,
G.
, and
Lin
,
R.
, 1995, “
A Three-dimensional Inverse Method for the Design of Hydraulic Runner with Rotational Coming Flow
,”
Fluid Machinery
,
U. S.
Roratgi
et al.
, eds., ASME FED-222, pp.
161
166
.
29.
Peng
,
G.
,
Cao
,
S.
,
Ishizuka
,
M.
, and
Hayama
,
S.
, 2001, “
Fully Three-Dimensional Inverse Computation of Hydraulic Impeller Using Finite Element Method
,”
Comput. Fluids
0045-7930,
10
(
2
), pp.
247
254
.
30.
Zangeneh
,
M.
,
Goto
,
A.
, and
Takemura
,
T.
, 1996, “
Suppression of Secondary Flows in a Mixed-Flow Pump Impeller by Application of Three-Dimensional Inverse Design Method: Part 1- Design and Numerical Validation
,”
ASME J. Turbomach.
0889-504X,
118
(
3
), pp.
536
543
.
31.
Lin
,
R.
, 1996,
Theory of Fluid Dynamics for Hydraulic Machinery
(in Chinese),
Mechanical Industry Press
, Beijing, China, pp.
43
56
.
32.
Pironneau
,
O.
, 1989,
Finite Element Methods for Fluids
,
Wiley
, New York, pp.
145
189
.
33.
Lin
,
R.
, and
Peng
,
G.
, 1995, “
An Advanced Numerical Simulation Method for Rotational Flow in Hydraulic Turbomachinery
,”
Fluid Machinery
,
U. S.
Roratgi
et al.
, eds.,
ASME FED-222
, pp.
173
176
.
34.
Peng
,
G.
,
Cao
,
S.
,
Ishizuka
,
M.
, and
Hayama
,
S.
, 2002, “
Design Optimization of Axial Flow Hydraulic Turbine Runner Part II: Multi-object Constrained Optimization Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
(
6
), pp.
533
548
.
35.
Cao
,
S.
,
Peng
,
G.
, and
Yu
,
Z.
, 2005, “
Hydrodynamic Design of Rotodynamic Pump Impeller for Multiphase Pumping by Combined Approach of Inverse Design and CFD Analysis
,”
ASME J. Fluids Eng.
0098-2202,
127
(
2
), pp.
330
338
.
You do not currently have access to this content.